PyShottab Documentation

Introduction:

pyShottab is a Shot Table creator written in Python (www.python.org). It has two
components:

A GUI options editor (shotGui)

A command line shotab creation program (shotCreate)

The GUI editor is written in wxWindows, a portable windowing toolkit, and works on
Unix, Windows, and Mac (X and Classic). The command line program is portable to all
platforms Python supports (virtually all modern OS's).

Installation:

Under Windows, there are two options. 1) run the program from source
(recommended) or 2) simply run the self-installing executable file pyShottab.exe. One
can get this file from the pyShottab cdrom, or off of the Seismic group wiki
http://seismic.ocean.dal.ca. This installs shotCreate.exe and shotGui.exe in ¢:\shottab (or
wherever was selected).

Under Linux (or Windows running from source) one needs to install the following
packages (easy point and click installers for windows, several different formats for
Unix/Linux):

- Python 2.2 or greater (python.org)

- wxPython 2.4 unicode (wxPython.org)

Then one can simply run the code as ./shotGui.py or ./shotCreate.py. On
Fox.ocean.dal.ca shotGui and shotCreate are symlinks to the .py files that reside in /
usr/local/bin, thus one can run “shotGui” instead. To install on a Linux macine with the
above packages installed, one can copy the /data/dave/pyShottab latest directory, and
run ./shotGui.py, ./shotCreate.py as well.

Under Solaris the installation requires the above packages and all their
dependencies (GTK, Glib, etc). This is an intensive process on an older machine.

http://seismic.ocean.dal.ca/
file:///home/chris/source/c:/shottab
http://Fox.ocean.dal.ca/

Usage:

One passes parameters to this program through an input file. One can create
and edit this with shotGui, and perform the conversion with shotCreate. For shotGui the
file name is optional, if not given it will use defaults. This file is similar to a windows .
ini file and is easy to edit in any text editor if need be.

Unix/Linux:
shotGui [file.cfg]
shotCreate file.cfg

Windows:
c:\pyshottab\shotGui [file.cfg]
c:\pyshottab\shotCreate file.cfg

GUL:

The main shotGui dialog is shown below:

0 Optio 0 0 0 ' 0D -
File Help
Cruise |D: |Defau|t Cruise 1D
Cutput Shot Table File Mame: Ishgngg_sm Choose...

Shotlog Position:
“# use positions from shotlog data

+ interpolate positions from nav data

Shotlog Data: Describe Shotlog Data

Mavigation Data: Describe Mavigation Data|

Heading Interpolation: _lInterpalate headings fram nay data

Shat Position Offset: _l correct shot positions for gun-gps offset (requires headings)
Shot Position Offset: Biehind (meters):,g_giRight (meters):,g_gi
Range Sign: _| Always make output range sign positive

(OBS Position: latitude:n g longitude:{ g g
(Central Meridian: il

Time of clock reset: day:|g hour:|g minute:|g secondz|g_g
(Offset hetween ship and OBS (msech(n g
Time of drift calibration: day:|g hour:|g minute:|g secondz|g_g

[Total clock drift (msec): 0.0
Gun Delay (msec): o0

Save..
Run...

file:///home/chris/source/pyShottab_old/docs/c:%5Cpyshottab%5CshotGui
file:///home/chris/source/c:/pyshottab/shotCreate

IMPORTANT NOTES:

Shotlog Position - choose to use the lat/long positions from (a) the shotlog,
or (b) the ship's navigation log. Use caution if using the shotlog positions. It does not use
differential GPS, and therefore may be less accurate. Also, remember to set the “position
mode” of the Odetics box to “dynamic” prior to shooting, otherwise the positions will not
be correct.

Heading Interpolation - if checked, this interpolates headings from
navigation data given their lat/long positions using a running sum algorithm. The first
and last few lines are thrown away with this process. If this is not checked, “heading”
must be present in the Navigation Data input expression (see below). If position
coordinates only exist in the shotlog (ie: nav doesn't exist), the shotlog can be read as
navigation data thus allowing correction for gun offset.

Shot Position Offset - the offset of the airgun behind the GPS antenna
(positive value), and lateral offset between the ship's GPS antenna and the airguns. If the
airguns are to the left (port) of the GPS antenna axis, use a negative sign. If the source is
to the right (starboard) of the antenna axis, use a positive value (see figure).

Axis of GPS antenna + starboard lateral

Centerline of ship

+ Lengthwise offset (behind)

Range Sign — If the range sign is going to be manually calculated, use this
so all ranges have a positive sign, making manual calculation easier.

OBS Position — the position of the OBS (decimal degrees). If OBS has not
been relocated, this is the drop position, else it is the relocated position.

Central Meridian — the reference longitude for this study area — usually in
the center of the area. An integer value equally divisible by 3.

Time of Clock Reset — the time the OBS clock was turned on or reset
(GMT). Assumed to be the time of initial calibration.

Offset between ship and OBS — the initial offset between the ship's GPS
clock and the OBS clock in milliseconds, prior to deployment. This follows the same
convention as the TOTAL CLOCK DRIFT (below).

Time of Drift Calibration — the time that the “post deployment offset” for
the OBS was determined (GMT).

Total Clock Drift — the total drift in milliseconds of the OBS clock relative
to the GPS clock, between the time of deployment and the time of recovery (see figure).
The Odetics clock calibration is given in terms of GPS time (seconds). The notation for
GPS clock calibration is the following: 1.000 s equals no actual offset, 0.9000 s equals
+0.1 s actual offset, and 1.1000 s equals -0.1 s actual offset (subtract the calibration value
from 1.0 s to obtain the offset).

For example, the pre-deployment and post deployment calibrations from the Odetics box
are given as 0.999134 s and 1.000512 s respectively. Thus the corresponding offsets are
0.0008660 s, and -0.000512 s respectively. The difference between these offsets is the
“total clock drift”, in this case -0.001378 s or -1.378 ms (post-deployment minus pre-
deployment offset).

Note that the CPU clock calibration is usually 1.8 ms greater than the Odetics clock

calibration, therefore 1.8 seconds must be subtracted from it to obtain the GPS
equivalent.

GPS Time

! 1 :

Odetics Calibration

0 1 2
| | |

Clock Offset

+1 0 -1
| | |

Gun Delay — the time delay from when the airguns are signaled to shoot
(GPS time), and when they actually shoot - is a static time offset in milliseconds
(positive).

Shot Time Format Dialog (Describe Shot Data):

Input File: Choose...

Lines of header to skip:[p S
Textual Format:

4 Standard odetics format - shotNao, day, haur, min, sec, pattialSec, |at, lon

~ shotho, day, hour, min, sec, lat, lon - whitespace delimited
-« Example with comments: fixed width, delimited
+ Custom Regular Expressian

Regular Expression: This is a pre-expanded reqular expression - see help

Help
Yiew Expanded|
"
$matchint{"shotho™)
15+
$matchint{"cay")
15+
$matchint{*hour")
15+
$matchint("min"}
e+
$matchFloat"sec™)
i+ /
Input Data: Test 15t 100 lines

| I

shotMo day | hour min sec parialSec lat

le I -
Ok | Cancel |

This dialog (similar also to that for parsing the Navigation data) allows one
to generically specify the format of a text file which one is to use in the shottab program.
The fields for shot time data are:
- shotNo
- day
- hour
- min
- sec
- partialSec (optional — will use 0 if not included in pattern)
- lat
- lon
Note that if the user selected “interpolate positions from nav data” then the
lat and long pattern lines need not be present.

The fields for navigation data are:
- day
- hour
- min
- sec
- lat
- lon

- heading

Note that if the user selected “interpolate headings” they don't need the
“heading” line. Conversely, if one wishes to correct for gun offset without interpolating
headings, heading data must exist in the nav file.

The “textual format” box allows one to select from some predefined format
expressions. Clicking on the “test 1* 100 lines” button below will allow one to test the
input to ensure all fields are being converted appropriately. There is an example with
comments which shows how to read in several different styles of data (fixed width, space
delimited, etc).

The filter expression is a special kind of regular expression (a facility for
matching sequences of input — used by Python, Perl, Awk, etc). We are using an
augmented regular expression style with the following characteristics:

- Itis “verbose” which means it can span multiple lines, and have

whitespace separating patterns. It can also have comments (#comment).

- Predefined patterns are available to ease the matching process — these are

access as $matchInt(“intName”), $matchFloat(“floatName”), etc.

The $functions() must be “expanded” - that is expanded into a regular
expression that matches for an integer, float, etc. Pressing the “View Expanded” button
allows one to view the final output. Expanding happens transparently, this button is for
utility only.

The “help” button gives some assistance for editing these expressions. This
is included below:

The regular expression editing window allows one to edit a regular expression

which is used to parse the input file line by line. These are in a pre-expanded
form which allows usto call certain predefined helper matching functions. The

'View Expanded' button allows one to view the resulting expanded regular expression.

The predefined matching helper functions are:

matchInt (name)
matchFloat (name)
matchStr (name)
matchLatLon (name)

matchInt matches an integer value with an options sign prefix.

matchFloat matches a float value with an optional sign, optional
pre-decimal value (eg: .012) and optional post-decimal value (eg: 12.).

matchStr is used to match a string. Its only use is to parse the 'partial
seconds' field seen in the odetics shotlog file.

matchLatLon matches a lat/long coordinate value in either of the following
formats:

+42.157

42 22.1 N
Meaning it matches both decimal degree with optional sign,
as well as degree minute with minute in decimal form, and an optional compass
direction character (N, E, S, W). Thus this helper function should match most
lat/lon coordinates available.

One references these functions like so:
ShelperFunction (argl, arg2)

One should be able to manage input from various types of input files simply by
rearraging the order that these helper functions are expected.

Regular expressions are used to 'match' expressions. For example, to match
one or more items of whitespace (spaces, tab, etc) one enters:

\s+
The '\s' means match whitespace, while the + modifier says 'match the previous
argument 1 or more times'. Thus the above statement consumes 1 or more pieces of
whitespace.

NOTE: the only optional match name in the shot times is 'partialSec' - if not matched,
it is not used.

If one is using lat/long coordinates from the shot time data, these need not be in the
regular expression match for the navigation data unless gps-gun offset correction is to
be performed.

To skip data which is not to be considered by the program, simply enter regular
expressions without helper functions. For example, to skip a real value:

\d*\ . \d*
Consumes 0 or more digits, a decimal place, then 0 or more remaining digits.

Advanced Regular Expression Editing

NOTE: These regular expressions are in 'Verbose' mode, meaning that
whitespaces/newlines are insignificant, and comments are allowed. (#comment).

Please reference the following URL's for Python regular expression assistance:
http://www.python.org/doc/current/lib/module-re.html
http://py-howto.sourceforge.net/regex/regex.html

For the purpose of matching to specific variables (such as shotNo, lat, lon, etc)
we use 'Named Groups' - meaning we match a set of input, and tag it with a symbolic
name so we can reference it in the loading stage regardless of position. For example
to match 'shotNo' assuming it is one or more digits only, the expression would look
like:
(?P<shotNo>\d+)
now with an optional sign (characters within sgaure brackets are a 'set' - matches any):
(?P<shotNo>[+-]12\d+)
Note that this is the actual way we match integers with matchInt ().
For a more complicated example, lets say you have day, hour, and minute all

in a field with no space delimeters (but fixed widths) in these formats (day:236, hour:1,
min:2) :

2360102

0010102
To match this we need to use braces {} - this matches {min,max} of the previous
elements - since we want a fixed number of digits for each, the min and max

are the same.
Then the corresponding regular expression would look like:
(?P<day>\d{3,3})

(?P<hour>\d{2,2})
(?P<min>\d{2,2})

If there is the potential for whitespace in between these components instead of
0's, as is the case with many Fortran output files, as follows:

(dddhhmm)
236 1 2
112
23456 1

or even
123 212

(note that the number of spaces cannot be relied upon)
Then a suitable expression to match the above would be:
(?P<day>[\d\s]{3,3})
(?P<hour>[\d\s]{2,2})
(?P<min>[\d\s]l{2,2})

This forces a match of exactly 3 (then 2 then 2) repititions of digits or whitespace -
forcing the 'fixed width' nature of the input data.

For more information, please see the URL's above.

Modifying:

Please see README.TXT for URL's for modification information — it is also included
below:

REQUIREMENTS:

Python 2.2 or greater,
wxPython 2.3 or greater
wxWindows library (included with wxPython in Windows)

Windows: 95/98/NT/2000/XP (for self-installing .exe): nothing
To run from source: same dependencies as for Unix.

Unix machine with Python 2.2, wxWindows and wxPython for running
from source (see below for windows). RPM's exist for RedHat
Linux, and Debian has all needed packages built.

To Build:
Python 2.2 (www.python.org)
wxWindows (www.wxwindows.orq)
wxPython (www.wxpython.org)
pylexe (http://starship.python.net/crew/theller/py2exe/)

NSIS (For creation of installation .exe -
http://sourceforge.net/projects/nsis

RUNNING IN WINDOWS:

To run shotGui (options file editor for backend process):
One can either run it from the link on the desktop, or from
the installed directory as shotGui.exe.
usage: "shotGui.exe [optionalConfigFile.cfg]"

To run shotCreate (backend shottab creation process):
Since this is a command line application, this should be run
from a command prompt to see the output, or from the gui (run
button) which also displays the output.
Usage: "shotCreate.exe configFile.cfg"

RUNNING IN UNIX:

While this depends on how this was installed, it is planned that both of
these utilities be set up in such a way as to allow one to run either
shotGui/shotCreate by simply typing: (eg: it is installed in the path)

shotGui [options.cfqg]
shotCreate options.cfg

Where options.cfg is the name of the options file you wish to work with.

BULDING Windows Self-Installing EXE:

This requires all the build prerequesites listed above for building in
windows.

First, ensure "python.exe" is in your path (eg c:\python22)

Now, build the shotCreate and shotGui exe's:
cd to where the .py's are, and type:

python setup.py pyZ2exe

This should invoke a process which creates a "dist" subdirectory,

under which are subdirectories "shotGui" and "shotCreate" - within
these directories are the corresponding .exe's and some dll's (and
pyd's) .

The exe's are now built - now to build the self-installing .exe:
(ensure you have NSIS at least version 2 - prerelease, alpha 7)
Run "makensis" on the nsi file, such as:

c:\progra~l\makensis pyShottab.nsi
This should create a file pyShottab.exe in the current directory -
this is the self-installing exe that should be distributed for

all versions of windows. ©Note that no other dependencies are
required for running the program other than this one file.

Module Layout:

shotCreate.py — The main conversion program

shotGui.py — The main GUI window

guiComponents.py — components used by shotGui
heading.py — functions for heading interpolation
options.py — module to support reading/writing options to a .ini style file

fileio.py — support for reading extremely large data files, and converting
them via a regular expression.

Itpl15.py — simply a string interpolation module that changes “$foo()”
into the output from function foo. Written by a 3" party.

Simple Changes:

Most of the interesting logic is in shotCreate.py and heading.py — these are
programmed in a simple fashion, and should be easy to understand and modify.

Should one need to add an option, they would take the following approach:
To add options to be edited there are 3 main components:

1) Add the option to the Options class of options.py — edit the
“comments” variable to comment it, and in __init add a
line such as:
self.newIntegerVar = 0
The default type (integer/string/float) must be what you
want to use in the program.

2) Modify the GUI options editor so that one is able to edit it's
value. Add the gui controls in __ init , and edit menuSave
and updateGui methods so that they get loaded/saved
properly. A simple example to clone would be total clock
drift.

3) Edit shotCreate.py to use the variable, such as
“foo = options.newIntegerVar”.

Since python is interpreted, one only needs to edit the .py file and run it again to test the
new changes — no build step is required. When the new code is well tested, then one can
finalize with a self-installing windows .exe for ease of distribution.

Dave LeBlanc

November 29, 2002

(updated September 23, 2004)
Dalhousie University

Dept. of Oceanography

PYTHON
powered

	Introduction:
	Installation:
	Usage:
	GUI:
	Shot Time Format Dialog (Describe Shot Data):
	Modifying:
	Module Layout:
	Simple Changes:

