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Abstract

Oceanic mixing occurs at molecular diffusion and viscous scales, called the Batchelor

and Kolmogorov scales, although it has signatures at larger scales. For example, the

rate of creation of temperature fluctuations by overturning against a mean tempera-

ture gradient is balanced by the rate of dissipation at the Batchelor scale. In potential

energy terms, buoyancy flux accumulates into a standing crop of available potential

energy of the fluctuations (APEF), which in turn decreases due to the potential en-

ergy dissipation term, raising the mean potential energy of the water column. If a

steady-state exists, then both the buoyancy flux and potential energy dissipation rate

are equal to the APEF divided by a suitable decay time.

This parameterisation of mixing is separated in two turbulence cases: growing

isotropic overturning scales and steady-state overturning scales with balanced iner-

tial and buoyancy forces. The decay time is shown to be inversely proportional to

overturn-scale shear and proportional to overturning time; this becomes proportional

to the buoyancy period for turbulence in inertial-buoyancy balance, whether it be

isotropic or not. Buoyancy flux is estimated from overturning scale quantities, which

are much easier to measure than mixing at the smaller viscous and diffusive scales.

Predictions of buoyancy flux and mixing efficiency compare favourably with labora-

tory turbulence data and to lake and oceanic data, provided that salinity-compensated

intrusions can be excluded from the analysis. Overturn scales are subsequently used

in the St. Lawrence estuary to estimate mixing rates; data suggest that solitons create

more mixing at the head of the Laurentian channel than does the larger scale internal

tide.

xv
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Km Eddy viscosity Km = −u′w′/(∂u/∂z) [m2 s−1].

LB Buoyancy scale LB = (Jb/N
3)1/2 [m].

Lh Horizontal turbulent length scale [m].

LO Ozmidov scale LO = (ǫ/N3)1/2 [m].

Lt Turbulent displacement scale Lt = ρ′2
e

1/2
/(∂ρo/∂z) [m].

LT Thorpe scale (rms average of Th) [m].

M2 Semi-diurnal tidal frequency [s−1].

N Buoyancy frequency (usually calculated on re-ordered profile).

Rf Flux Richardson number Rf = Jb/ − u′w′(∂u/∂z).
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Re Reynolds number Re = u′Lt/ν

Rew Reynolds number based on vertical turbulent velocity Rew = w′Lt/ν

Rig Gradient Richardson number Rig = N2/(∂U/∂z)2.

(Rig)cr Empirical value of the critical gradient Richardson number for overturning.

Rit Turbulent Richardson number Rit = N2L2
t /u

′2.

(Rit)cr Empirical value of the critical turbulent Richardson number for overturning

(isotropic inertial-buoyancy balance value).

(Rit)iso Turbulent Richardson number restricted to isotropy (Lh = LT );

(Rit)iso = (LT /LO)4/3.

(Rit)IB Turbulent Richardson number restricted to inertial-buoyancy balance (Lh =

LO);

(Rit)IB = (LT /LO)2.

to Decay time of the turbulent kinetic energy by ǫ [s].

T , ρ Temperature and density.

T , ρ Mean temperature or density.

To, ρo Re-ordered temperature and density profile.

T ′, ρ′ Thorpe fluctuation at a point, T ′ = T − To.

T ′
e, ρ′

e rms fluctuation at a point defined as difference between observation and mean

state. Includes internal waves.

Th Thorpe displacement [m].

TKE Turbulent kinetic energy = u′2 + v2 + w′2 ≈ q2 [m2 s−2].

u′, v′, w′, q Turbulent velocity fluctuations; q2 = 2 u′2 + w′2.
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Chapter 1

Introduction

Interest in oceanic turbulence and mixing is maintained by the need to parametrize

eddy viscosity and diffusivity. Applications come from many areas: for example,

ocean circulation models require a formulation of subgrid-scale diapycnal mixing in

terms of grid-scale variables. Buoyancy budgets and fluxes of passive tracers such as

nutrients are important issues on continental shelves and in estuaries.

Recent direct measurements of diapycnal buoyancy flux Jb used a vertical sampling

pitot tube to measure w′ (Moum, 1990) or a conventional air-foil probe sampling

horizontally (Yamazaki and Osborn, 1992). However, most Jb measurements are

made indirectly, usually inferred from the rate of diffusive smoothing of temperature

fluctuations, χθ, or from the rate of dissipation of turbulent kinetic energy, ǫ. The idea

behind the inference of buoyancy flux from measurements of the rate of dissipation of

temperature variance is that buoyancy flux produces temperature fluctuations, and

that if there is a steady-state then the dissipation of the potential energy associated

with that variance must equal the buoyancy flux. Measurements of χθ and ǫ are made

at millimeter to centimeter scales, where molecular diffusion and viscous dissipation

occur. The measurements are technically difficult to execute, and have yet to become

routine; for example, microstructure measuring intruments are not installed on CTDs.

In this thesis, I shall discuss the use of ‘overturn-scale’ quantities to infer mixing

rates. Quantities such as Thorpe scales, LT , describing the size of overturning eddies,

1
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and the Available Potential Energy of the density Fluctuations (APEF), describing

the potential energy of the overturns, have been related to mixing rates (Ozmidov,

1965; Thorpe, 1977; Dillon, 1982; Crawford, 1986; Dillon and Park, 1987). These

quantities can be measured much more easily than dissipation scale quantities. They

are called Thorpe variables, because overturns are obtained by comparing a measured

profile to its re-ordered counterpart; a technique pioneered by Thorpe (1977).

Traditional thought is that the turbulent energy cascade relates the energy-

containing Thorpe scales to the dissipative ones (Ozmidov, 1965); from this was

born the idea that Thorpe scales LT should be related to the rate of dissipation of

turbulent kinetic energy ǫ through the Ozmidov scale LO = (ǫ/N3)1/2 (Thorpe, 1977).

This ‘traditional’ model is by no means the only point of view on the relation of

overturn scales to dissipative ones, but it is widespread. For example, Ivey and Im-

berger (1991) interpreted the varying mixing efficiency of grid turbulence in terms of

a turbulent Froude number (discussed in Appendix B), a new approach, yet interpret

the results using the traditional model by assuming that oceanic mixing occurs at a

balance between inertial and buoyancy forces where turbulent kinetic energy is only

sufficient to overturn against stratification; this defines the inertial-buoyancy balance

(The turbulent Froude number Frt = u′/NLT is approximately equal to unity). This

view is also consistent with kinematical models of breaking internal waves, where the

size and frequency of breaking events determines the effective diffusivity of the water

column (Garrett, 1989), because it is typically assumed that these events (or puffs)

occur at inertial-buoyancy balance due to the K-H instability creating them. Ivey

and Imberger’s (1991) view is that this occurs with maximal mixing efficiency.

The kinematical model associated with the traditional link of LT ≈ LO is that of

the occasional breaking of internal waves due to superposition of waves such that the

gradient Richardson number is critical. If this occurs as isolated events (Gregg, 1987),

then each overturn evolves individually, as described by Thorpe (1973) (discussed in

section 2.3.1). The energy balance leading to models such as the Osborn-Cox model

(Osborn and Cox, 1972) is then unclear because of time evolution and unknown
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redistribution terms; it is hoped that ensemble averaging of multiple profiles takes

care of these variations (Gregg, 1987).

A simple picture of mixing events is nevertheless as follows: overturning at large

scales of the inertial sub-range brings dense waters up and lighter waters down through

the water column. As overturned water is buoyantly forced back to its equilibrium po-

sition, it is also entrained by the possibly stronger inertial forces (if Frt > 1 such that

turbulent velocities are greater than the buoyancy velocity) in an assumed cylindrical

motion at overturning scales. A turbulent cascade of energy ensues where turbulent

velocity strain brings larger scale kinetic energy to smaller scales, and so on to viscous

dissipation at the Kolmogorov scale (mentioning convective rolls and such features

(Thorpe, 1984) are included as turbulent flow in this simplistic description). The

smaller-scale turbulent velocities are less energetic than the outer scale overturning

velocities, such that they redistribute energy, possibly inducing some restratification.

This cascade drains energy at a rapid rate, within an overturning time proportional

to the turbulent velocity scale divided by the length scale of the overturn. The po-

tential energy gained from large scale overturning corresponds to positive buoyancy

flux. Since the final mixed state must have lower potential energy than the overturned

state, some restratification must occur by redistribution from the turbulent velocities.

During this time, dissipation at the Batchelor scale diffuses temperature fluctuations

(and salinity fluctuations at smaller scales) away, raising the potential energy of the

water column.

Identifying Overturns

Thorpe (1977) found overturns in vertical density profile by re-ordering the density

profile; the size of the overturn was characterized by the rms distance points were

moved in the re-ordering. This implies that the overturn is defined in the density pro-

file as extending as far as the density profile differs from the re-ordered profile. Dil-

lon (1982) found continuous depth spans containing re-ordering displacements much

shorther than the depth span. In this case he used the entire span as an averaging
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layer, instead of individual overturns, because it wasn’t clear where one started and

finished. In this thesis, the extent of an overturn in a vertical density profile is defined

as the smallest group of consecutive points which may be re-ordered without moving

any other point in the profile. This uniquely identifies overturns even if they are

found consecutively.

New Models

Two new models will be presented, with predictions similar to Ivey and Im-

berger (1991) and to Dillon and Park (1987), but with implicit interpretations (which

follow from model assumptions) different than those of these authors. These two

models do not assume random overturning, but rather continuous overturning in en-

ergetically mixed layers, with external forcing giving overturning its energy balance

(or lack of balance) between inertial and buoyancy forces and isotropy characteris-

tics, rather than internal instability leading to inertial-buoyancy balance. In these

models, the Available Potential Energy of the Fluctuations (APEF) introduced by

Dillon (1984) is related directly to buoyancy flux through a decay time proportional to

an eddy overturning time; this time scale is the same as for the decay of the turbulent

kinetic energy (TKE) by ǫ.

The description of the overturning events for these two models is similar to the

above, except that initial instability leads to persistent overturning fed from Reynolds

stress acting on the mean shear. Two cases occur. The first is that overturning may

occur at scales smaller than inertial-buoyancy balanced scale (for example, due to bot-

tom roughness setting the initial overturning scale). Overturning is then unrestrained

by stratification and overturn scales grow as they do in unstratified grid turbulence

experiments. This is described by model two, for growing isotropic turbulence (model

one describes the traditional assumption that LT ≈ LO).

Isotropy implies that properties of the turbulence do not depend on direction or

the choice of a coordinate system. Strictly speaking, isotropy implies that there are

no Reynolds stresses u′w′; in this thesis, isotropy describes only the characteristic
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of approximate equality of turbulent kinetic energy in all directions. Therefore, the

ratio of vertical to horizontal rms velocity fluctuations w′/u′ will quantify isotropy,

where w′ and u′ are rms turbulent velocities at the largest scales of the overturn.

This is consistent with observations of Gargett et al. (1984) who observed that verti-

cal spectral components were disminished relative to horizontal ones for a turbulent

intensity, ǫ/νN2, less than 200. Assuming that continuity in turbulent scales holds

as u′LT ≈ w′Lh, where LT and Lh represent vertical and horizontal turbulent length-

scales, isotropy will also be simply described by the ratio of vertical to horizontal

turbulent lengthscales LT /Lh approximately equal to unity. Note, however, that

while LT is obtained easily by re-ordered the vertical density profile, horizontal tur-

bulent lengthscales are not as easily measured because of the lack of a horizontal

mean gradient of a scalar property of the fluid; its use will be to provide a picture of

the state of the turbulence, but the velocity component ratio can be interchanged for

LT /Lh.

In the second case for which persistent overturning occurs, external shear forces the

turbulence on a vertical extent smaller than the inertial-buoyancy balanced vertical

overturning scale (for example, shear from an internal tide mode may be strong on

a short vertical scale). Vertical overturning scales stop growing when they reach this

forcing limit, but nothing stops horizontal scales from growing further. A scaling

analysis in chapter 3 shows that horizontal scales should grow to the same scale as

the vertical inertial-buoyancy balance scale (the Ozmidov scale), which is greater than

the vertical overturning scale. Overturning remains in this steady-state, obtaining its

energy from the mean shear; mixing then erodes the stratification within the layer.

Mixing efficiency may then decrease as the potential energy available to overturning

is eroded away with the stratification, limiting the potential energy that can appear

as buoyancy flux. Further entrainment leads to density fluctuations, measured as

available potential energy and related to buoyancy flux.

This last model applies to steadily mixing layers such as surface or bottom bound-

ary layers that tend to be well mixed. Buoyancy flux in these layers may then come
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from entrainment or erosion of the adjacent pycnocline. A parameterization in terms

of layer quantities describing the forcing could be used (or developed) instead of us-

ing the above approach. However this thesis is not about relating forcing directly to

mixing (e.g. Gregg’s (1989) model relating the rate of dissipation of TKE to 10-m

internal wave shear), but rather aims at showing that measurements of the act of

overturning can lead to adequate mixing estimates.

In these two new models, the persistence of the overturning is thought to lead

to a steadier energy distribution between overturning potential energy and turbulent

kinetic energy, as well as between kinetic and potential energy dissipation rates. The

turbulent redistribution terms are still present, leading to possible mis-estimates of

energy equation terms from vertical profiling through overturn events, because redis-

tribution is not measured. However, sampling variance should be reduced relative to

random overturning because of the greater degree of homogeneity of the turbulent

field.

The work presented here parameterizes the average buoyancy flux of single over-

turns in terms of snapshot measurements of their available potential energy. To relate

these results to basin-scale values of buoyancy flux or eddy diffusivity, a sufficient

number of such profiles would need to be averaged to take account of the spatial and

temporal distributions of the overturning events. These distributions, which must

vary between locations depending on the intensity of the forcing mechanism, are not

discussed in this thesis.

Dillon (1982) has probably accomplished the most in showing the relation of

overturn-scale quantities to both the rate of dissipation of turbulent kinetic en-

ergy, and to buoyancy flux. He was first to validate (under limited conditions)

Thorpe’s (1977) idea that Thorpe scales should be related to Ozmidov scales LO =

(ǫ/N3)1/2. His efforts have resulted in a more recent empirical model relating the

APEF to buoyancy flux (Dillon and Park, 1987). However, the views of the LT –LO

relation (Dillon, 1982) and of the APEF–Jb relation (Dillon and Park, 1987) are dif-

ferent as the first relates overturns to ǫ (through LO) and the second relates them to
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Jb. For example, Dillon et al. (1987) said “It is not our intention to suggest that the

APEF is preferable to the Thorpe scale but rather to point out that Thorpe variables

other than LT also have physical significance.” It was therefore unclear which model

should be used. We will build on Dillon’s results here with simple kinematical models

relating overturning to buoyancy flux, and relate these concepts to Dillon’s empirical

results.

A suggestion that Thorpe variables can be used to infer buoyancy flux comes

from recent direct measurements of buoyancy flux. The dissipation of temperature

variance is a microscale quantity, but Moum (1990) measured buoyancy flux directly

in the equatorial undercurrent, and found that the largest values of w′ρ′ (mass flux)

were at overturn-scales, rather than at dissipative scales. This is an indication that

temperature variance is created at the energy-containing scales and dissipated at

smaller scales. Instead of focusing on difficult microscale measurements, the buoyancy

flux could be inferred from measurements of overturn-scale quantities where most of

Jb occurs.

This thesis will do just that: focus on the relation of the APEF to buoyancy flux,

parameterized over individual overturn measurements. Basin scale values of eddy

diffusivity or buoyancy flux are obtained by further averages which are not discussed

in this thesis. The outline of the thesis is as follows:

Chapter 2 reviews models used to infer mixing rates from microstructure measure-

ments. Terminology (e.g. mixing layers and overturns) is established. The

APEF is introduced, and approximations of it used throughout the thesis are

derived and tested.

Chapter 3 reviews the assumptions made in the traditional view of linking LT to ǫ.

Alternate derivations are made, leading to 3 mixing models to be tested:

Model one: The traditional view, links LT to ǫ. It will be emphasized that, as

Dillon (1982) suggested, this is not a general result in the ocean.

Model two: Relates Jb to the dissipation of the APEF within an “overturning
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period” of approximately LT /u′, where u′ is the turbulent velocity associ-

ated with the overturn.

Model three: relates Jb to the dissipation of the APEF within a buoyancy

period N−1.

Models two and three apply in different conditions. I will show that they are

preferable to model one in energetic cases.

A hypothesis is put forward that the overturning time scale LT /u′ is propor-

tional to the inverse of the large scale shear (∂U/∂z)−1 when this shear forces

the turbulence. The buoyancy flux of model two, and mixing efficiency of mod-

els two and three, could then be inferred without measurements of turbulent

velocities.

Chapter 4 verifies the assumptions made in the derivation of models two and three

using grid-turbulence data. The second model is also shown to work for a

wide range of overturning periods; predictions for buoyancy flux and mixing

efficiency are consitent with data within a factor of two. The hypothesis LT /u′ ∝

(∂U/∂z)−1 is verified.

Chapter 5 uses Dillon’s (1982) oceanic data to show that model one holds, but only

in limited conditions, and that oceanic mixing rates are more consistent with

model three. Another fresh-water data set is somewhat consistent with the

second model. The buoyancy flux is related to the decay of the APEF over a

decay time scale to for both models two and three, but both models apply for

different physical circumstances. It is not inconsistent that both do well for

different data sets. Model one is discarded in strongly forced mixing in favour

of models two and three because the assumption of constant mixing efficiency

does not generally hold in strongly mixed areas of the ocean.

Chapter 6 discusses a test case of the application of models to new data taken in

Emerald basin (Van Haren, pers. communication; Oakey, 1990). It is shown
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that the inferred buoyancy flux is mostly consistent with observations of ǫ. At

least 40 to 60% of the water column expected to be overturning is shown to be

overturning. Some of the high APEF data are inconsistent with simultanenous

low measurements of ǫ; these anomalous APEF values are thought to be caused

by intrusions.

Chapter 7 uses the buoyancy flux models to study mixing layers observed in the

St. Lawrence estuary. It is shown that reliable use of any model requires first

that intrusions be detected using T–S relations and excluded from APEF cal-

culations. The head of the Laurentian channel is thought to be the generation

point of a large internal tide, which was thought to force high mixing rates.

Analysis of a few mixing layers using buoyancy flux models tested in this thesis

shows that solitons in fact create more mixing than is associated with internal

tide shear.

Chapter 8 provides a summary and suggestions for future work. Models two and

three are appropriate for different conditions. Model two requires knowledge

of turbulent velocities to infer the turbulent Froude number in order to obtain

buoyancy flux; in cases where such data are not available, the buoyancy flux

from model three serves as a lower bound.



Chapter 2

Microstructure Models, Overturns

and Thorpe Quantities

This chapter serves three purposes

• To introduce the models used to infer buoyancy flux from microstructure mea-

surements. Overturn-scale methods described in later chapters share some of

the concepts used.

• To discuss the general notion of overturning structures that lead to mixing.

• To introduce overturn-scale quantities such as Thorpe scales and the Available

Potential Energy of the Fluctuations and its approximations. These will be

used throughout the thesis.

The first two sections are all a review, mostly of Gregg’s (1987) own review of

mixing. The third section introduces the APEF and some new key results quantifying

the validity of several approximations.

10
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2.1 Microstructure Measurements

Except for recent direct measurements of diapycnal buoyancy flux1 Jb = (g/ρ)ρ′w′

(Moum, 1990; Yamazaki and Osborn, 1992), the majority of Jb measurements are

made indirectly. The buoyancy flux is usually inferred using measurements of the rate

of diffusive smoothing of temperature fluctuations, χθ, which occurs at the Batchelor

scale (νκ2
T /ǫ−1)1/4 (for a Prandtl number ν/κT greater than unity, as for water) or

using measurements of the rate of dissipation of turbulent kinetic energy, ǫ, which

occurs at the Kolmogorov scale LK = (ν3/ǫ)1/4.

2.1.1 Shear Microstructure

The rate of dissipation of turbulent kinetic energy, ǫ, is used, amongst other things, to

determine internal wave decay rates and, by comparison with laboratory experiments,

to determine whether turbulence is intense enough to produce a buoyancy flux (see

appendix A for a discussion) (Gregg, 1987). It is used indirectly to determine the

diapycnal flux of momentum and mass.

Both momentum and mass flux formulations start from the turbulent kinetic en-

ergy equation for a shear flow, derived below.

Turbulent Kinetic Energy Equation

The turbulent kinetic energy (TKE) equation is obtained by multiplying the Navier-

Stokes equation
∂ũi

∂t
+ ũj

∂ũi

∂xj

= −
1

ρ

∂p̃

∂xi

+ ν
∂2ũi

∂x2
j

− g′δi3 (2.1)

by ũi, where the superscript ˜ represents a Reynolds decomposition into mean and

turbulent parts

ũi = U i + u′

i (2.2)

and the index i is for the three velocity components with summation over j = 1, 2, 3.

The term g′ represents reduced gravity ρ′g/ρ associated with a density fluctuation ρ′

1The sign of Jb was chosen to be the same as mass flux, instead of negative mass flux
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in a fluid of mean density ρ. Here, U may be interpreted as a time average, and u′

as a fluctuation away from this average due to turbulence.

Let us assume that turbulence is confined within an ‘overturn’, where heavy water

has overturned over overlying lighter water and turbulent motions begin, straining

turbulent energy from the overturning scale to the smaller viscous scales.

The product of (2.1) with ũi leads to an energy equation from which the kinetic

energy equation of the mean flow can be subtracted (See Tennekes & Lumley (1972)

for a discussion). This leaves the TKE equation

∂

∂t

[

1

2
u′

iu
′
i

]

+ U j
∂

∂xj

[

1

2
u′

iu
′
i

]

=
∂

∂xj

[

−
1

ρ
u′

jp +
1

2
u′

iu
′
iu

′
j − 2νu′

isij

]

− u′
iu

′
j

1

2
(
∂U i

∂xj
+

∂U j

∂xi
) − 2νsijsij − g′uiδi3 (2.3)

where the quantity sij is the fluctuating rate of strain, defined by

sij =
1

2

[

∂u′
i

∂xj

+
∂u′

j

∂xi

]

(2.4)

If the turbulence is steady and homogeneous, the left-hand side terms of (2.3)

vanish. The first three terms on the right hand side (within the divergence term)

are transport terms by pressure-gradient work, by turbulent velocity fluctuations

and by viscous stress. If the flux into a closed control volume, enclosing the turbu-

lent overturn, is zero, these terms redistribute energy (Tennekes and Lumley, 1972).

The viscous term, 2ν ∂u′
isij/∂xj is much smaller than the other two and is usually

neglected; Its ratio to either of the other divergence terms is Re−1
t (Tennekes and

Lumley, 1972) where Ret is a turbulent Renolds number u′L/ν and L is a turbulent

length scale. Since Ret is much greater than unity for turbulent flows, then that

transport term is safely neglected. The first two redistribution term are neglected

assuming that sampling of the turbulent flow is sufficient to average them out.

The term u′
iu

′
j
1
2
(∂U i/∂xj +∂U j/∂xi) is the rate of production of TKE by Reynolds

stresses acting against the rate of strain of the mean flow. For a simple vertically

sheared flow, this term reduces to u′w′ ∂U/∂z. This is the only turbulent energy

source for such a flow.
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The term 2νsijsij is often written νu′
i∇

2u′
i or 15

2
ν[∂u′

∂z
]2, used because the integrated

shear spectra is directly measured with shear probes (Oakey and Elliott, 1982; Oakey,

1982) and is called the rate of dissipation of turbulent kinetic energy, ǫ. This expresses

the molecular dissipation due to small-scale shears created by turbulent strain.

For a stratified sheared flow with homogeneous steady-state turbulence, the TKE

equation reduces to

u′w′
∂U

∂z
= −Jb − ǫ (2.5)

where the buoyancy flux Jb = (g/ρ) w′ρ′ is the energy sink for the TKE transfered to

potential energy. The relative contribution of the buoyancy flux as an energy sink is

often expressed as the flux Richardson number, defined by

Rf ≡
Jb

−u′w′(∂U/∂z)
(2.6)

Dissipation Method

The dissipation method expresses the momentum flux in terms of an eddy coefficient

Km

u′w′ = −Km
∂u

∂z
(2.7)

This eddy parameterisation assumes that the flux of the quantity u′, or momentum,

is equal to an eddy coefficient times the gradient of that same quantity. Since the

velocities fluctuations u′ are transported—and even created—by overturning motions,

they can be defined as overturning scale fluctuations from the mean state.

Combining (2.5) with (2.6) and (2.7) yields Km in terms of Rf together with

measurable quantities ǫ and shear.

Km =
ǫ

(1 − Rf )[
∂u
∂z

]2
(2.8)

This parameterisation is not appropriate when internal-wave shear forces the tur-

bulence, because then the shear evolves on the same time scale as the turbulence,

N−1, (Gregg, 1987) where N2 = (−g/ρ)∂ρ/∂z is the stability of the water column,

and 2πN−1 is the buoyancy period. The parameterisation is appropriate when a
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strong mean shear is greater than the fluctuating part due to internal waves, such as

for the equatorial undercurrent or for a tidal shear (Gregg, 1987).

Osborn Model

The mass flux formulation again uses an eddy coefficient formulation (Osborn, 1980),

defined by

w′ρ′ = −Kρ
∂ρ

∂z
(2.9)

equivalent to

Jb ≡
g

ρ
w′ρ′ = KρN

2 (2.10)

Substituting (2.6) and (2.5) into (2.10) gives the familiar form for eddy diffusivity2

Kρ =
Rf

1 − Rf

ǫ

N2
(2.11)

2.1.2 Temperature Microstructure

The Osborn-Cox (1972) model for heat flux in a mixing fluid assumes that temper-

ature fluctuations T ′ are created by turbulent overturning against a mean gradient

∂T/∂z (Gregg, 1987). Here T ′ is a fluctuation from a mean state T , and will be

assumed later to be a Thorpe fluctuation.

The formulation starts from the temperature equation

∂T

∂t
+ ui

∂T

∂xi
= κT

∂2T

∂x2
i

(2.12)

where κT is the molecular diffusivity of heat. Velocity and temperature variations are

divided into mean and turbulent fluctuation parts, similarly to the TKE derivation.

The equation for the turbulent part is

∂T ′

∂t
+ U i

∂T ′

∂xi
+ u′

i

∂T

∂xi
+ u′

i

∂T ′

∂xi
= κT

∂2T ′

∂x2
i

(2.13)

2From the definitions of eddy diffusivity (2.10) and eddy viscosity (2.7), the relationship
Km/Kρ = Rig/Rf follows by using the definition of Rf from (2.6) and the definition of Rig =
N2/(∂U/∂z)2. The often assumed equality between eddy diffusivity and viscosity implies that the
gradient and flux Richardson numbers are equal as well.
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Multiplying by 2T ′ and averaging yields an equation for temperature variance T ′2

∂T ′2

∂t
+ U i

∂T ′2

∂xi
+ 2 u′

iT
′
∂T

∂xi
+ u′

i

∂T ′2

∂xi
= 2 T ′κT

∂2T ′

∂x2
i

(2.14)

The terms on the left-hand side are rate of change of temperature variance, advection,

production by turbulent overturning against mean gradients, and turbulent redistri-

bution. The right-hand side term can be rewritten by noting that

∂

∂xi

∂

∂xi

(T ′ · T ′) = 2
∂

∂xi

[

T ′
∂T ′

∂xi

]

= 2
∂T ′

∂xi

∂T ′

∂xi

+ 2 T ′
∂2T ′

∂x2
i

(2.15)

The right-hand side of (2.14) becomes

2 κTT ′
∂2T ′

∂x2
i

= κT
∂2T ′2

∂x2
i

− 2 κT
∂T ′

∂xi

∂T ′

∂xi
(2.16)

The first term on the right-hand side is a redistribution term and the second is the

decay term: the rate of diffusive smoothing of temperature fluctuations.

If the turbulence is steady and homogeneous, if the redistribution terms are ne-

glected (or averaged out by adequate sampling) and if only vertical temperature

gradients exists, the production of fluctuations is then balanced by their rate of diffu-

sion, χθ = 6κT (∂T ′/∂z)2 (where the factor of 6 comes from assuming isotropy). The

temperature fluctuation equation (2.14) is then

2w′T ′
∂T

∂z
= −6κT

[

∂T ′

∂z

]2

(2.17)

Like many other ‘eddy’ parameterisations, the transported quantity w′T ′, in this

case temperature flux, is assumed to equal to the product of an eddy coefficient

Kheat and of the mean gradient. This form is similar to the molecular heat transport

through diffusion κT ∂T/∂z where κT is the molecular diffusivity of heat. The eddy

coefficient formulation for the production, w′T ′ = −Kheat ∂T/∂z, yields (Osborn and

Cox, 1972):

Kheat =
χθ

2[∂T/∂z]2
(2.18)
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The quantity (∂T ′/∂z)2/(∂T/∂z)2 is termed a one-dimensional Cox number, Cx, and

within a constant factor is the ratio of turbulent to molecular diffusivities for heat.

The eddy diffusity for heat can be simply written

Kheat = 3 κTCx (2.19)

where the factor of 3 assumes full isotropy, but is sometimes replaced by 1 (layered)

to 3 (isotropic).

The Osborn-Cox model is not appropriate where lateral motions, rather than

overturning, create the temperature fluctuations. In that case vertical production

does not balance the creation of temperature variance from overturning against a

vertical temperature gradient, which is a basic assumption of the model. Thus it will

fail in the presence of thermohaline intrusions (Gregg, 1987).

2.1.3 Mixing efficiency

The ratio Rf/(1 − Rf ) in (2.11) corresponds to the ratio of Jb/ǫ. It is referred to as

the mixing efficiency Γ = Jb/ǫ. Osborn (1980) uses an energetics argument to suggest

that Rf , and therefore Γ, must be less than unity. The argument reads as follows. If

shear ∂u/∂z is the source of turbulent production, u′ velocity fluctuations will first

be created. Pressure velocity correlations then re-distribute the energy to v′ and w′

fluctuations. Viscous dissipation acts on all components of velocity fluctuations, but

buoyancy flux can only come from the vertical component. The mixing efficiency

must then be of the order of one third, because all three components of velocity

fluctuations are dissipated by viscosity while only one participates in buoyancy flux.

Oakey (1982; 1985), having simultaneous measurements of both χθ and ǫ, equated

Kρ from (2.11) to Kheat from (2.19) to yield

Γ =
(2 ± 1) κT CxN

2

ǫ
(2.20)

This is equivalent to equating buoyancy flux Jb to the dissipation of potential energ in

Γ = Jb/ǫ: the assumption of the Osborn-Cox model. Oakey obtained Γ = (1± 1
2
) 0.24
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from 25 segments of 10 to 15 m of vertical microstructure profiles (Oakey, 1982) and

Γ = (1 ± 1
2
) 0.265 using 275 such segments (Oakey, 1985). The ± factor is due to

the isotropy condition of (2.19), having assumed a factor of 2 which can vary from 1

(layered) to 3 (isotropic).

2.2 Overturning Scale

The microstructure methods of inferring mixing rates described above assume a

Reynolds stress acting against a mean shear3. All used some form of eddy parameter-

isation. This view is compatible with steady 3-dimensional homogeneous turbulence

where energy is carried through eddies from the large scale inputs to small scale

where it is dissipated, consistent with the Kolmogorov TKE spectrum. Thus, there

is a basis for inferring microscale mixing rates from the measurement of larger scale

overturning.

2.2.1 Ozmidov Scale, LO

In this context of steady-state turbulence, Ozmidov (1965) related ǫ to the size of

the biggest isotropic eddy in a stratified fluid. The Kolmogorov energy spectrum,

E(k) ∝ ǫ2/3k−5/3 (Tennekes and Lumley, 1972), gives the velocity fluctuations at an

overturning length scale l as

u′2 ≈ kE(k) ≈ (l ǫ)2/3 (2.21)

assuming isotropy and using l ≈ k−1 as a scaling4. If stratification is added then

overturning must also work against stratification. The potential energy increase tied

to the overturning motion is ≈ N2l2. It increases faster with overturning size (∝ l2)

3The concept of the mixing efficiency Γ = Jb/ǫ is still useful to describe mixing forced by internal
waves rather than by production against a mean shear (as used in the definition of Rf ). In such
a case the generalized form of the production term in (2.3) provides the forcing term, and the
redistribution terms may be more important because of the short time scale of the internal waves.

4Equation (2.21) will be shown to hold very well empirically in chapter 4, section 4.3.1, in the
presence in stable stratification.
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than the source of energy in the Kolmogorov spectrum (from (2.21), u′2 ∝ l2/3).

Therefore, there is an energy balance between the two at a length scale known as the

Ozmidov scale

LO = (ǫ/N3)1/2 (2.22)

LO corresponds to the length scale of the biggest isotropic eddy possible in the pres-

ence of stable stratification. The Ozmidov scale, depending on ǫ, is a microscale

measurement of a large scale variable. It could be argued that the Ozmidov scale is

actually based on a wavenumber, and that a factor of 2π should be added to (2.22).

However (2.22) is widely used in the literature, and so it is left as it is.

2.2.2 Thorpe Scale, LT

Thorpe (1977) measured temperature inversions—where density decreases with

depth—which he thought to be associated with overturning turbulent eddies, called

“overturns”. Although these mixing events are neither continuously created nor in a

steady-state, the overturning scale was thought to be correlated with the Ozmidov

scale. There is a tremendous utility in this correlation, if it exists, because then the

overturn size could be used to estimate microscale dissipation, and therefore overturn

scale measurements might be used to infer microstructure mixing rates. The required

temperature (or density) and depth resolution is discussed at the end of this chapter.

Thorpe devised an empirical method to estimate the size of overturns in a strat-

ified flow from the inversions that they create. The method consists of rearranging

the inversion-containing vertical density profile ρ(z) into a unique stable monotonic

profile ρo(z). Thus ρ◦(z1) ≤ ρ◦(z2) if z1 > z2 and z is the vertical coordinate increas-

ing upwards. The idea is that the re-ordered profile approximates the state before

instabilities occurred, or equivalently the profile obtained after the gravitational col-

lapse of all the overturns without irreversible mixing. The Thorpe displacements,

Th, are defined as the distance measured points are moved during the re-ordering

computation to reach their stable location; thus ρ(z) = ρ◦(z + Th(z)). The Thorpe

scale LT is the rms value of Th over all points of the overturn or any other averaging
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depth span.

The size and frequency distribution of overturns are most simply conceptually

linked to vertical diffusivity through Kv = 1
12

γmixH
2t−1

e (derived in Chapter 3), where

H is the overturn size, te is the time between overturning events and perfect homogeni-

sation leads to γmix = 1 or γmix < 1 if the layer is not mixed completely (Garrett,

1989). If Th varies linearly between −H to +H within an overturn of size H , and

if the overturn persists for a time to, the expected squared Thorpe scale (averaged

over the profile and over time) is 〈L2
T 〉 = 1

3
H2(to/te). Garrett (1989) uses this and

Kv = 1
12

aH2t−1
e = Γǫ/N2 to show that a LO/〈LT 〉 ratio close to unity is not unex-

pected with Γ ≈ 0.2, γmix ≈ 1 (assuming the overturn mixes the layer completely),

and Nto = 0(1) (assuming that the natural time scale is set by buoyancy forces).

Dillon (1982) was first to measure both dissipation and Thorpe scales and show the

LO/LT ratio to be a constant near unity away from surface mixed layers. The Thorpe

scale is then a fine scale measurement of microscale dissipation. This result will be

reviewed in this thesis.
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2.3 Mixing Structures

The kind of mixing structure present in various parts of the ocean has a bearing on

the mixing intensity and efficiency and on the parameterisation of the mixing itself.

In his discussion of the characteristics of the turbulence, Gregg (1987) discusses 3

types of structures observed in the thermocline: puffs, wisps and persistent mixing

zones. The puffs and persistent mixing zones are outlined here because the kinematics

of mixing layers and mixing events is at the foundation of the microstructure mixing

models described earlier. The descriptions and discussion of the section are mostly

from the reviews of Gregg (1987) and Thorpe (1973). It should be noted that many

of the ideas and laboratory observations about mixing are not tested in the ocean,

and we do not have a clear picture of all the mechanics of ocean mixing.

2.3.1 Puffs—K-H billows

Puffs, or isolated billows, resemble Kelvin-Helmholtz billows. In the ocean, these

typically have thicknesses ≤ 1 m and a horizontal extent ≤ 200 m (Gregg, 1987).

Thorpe (1973) describes the evolution of K-H billows; a short account will be

given here. Instabilities were created in the laboratory by tilting a tank containing

a layer of fresh water overlying a layer of brine, with the interface thickness set by

diffusion after a fixed time. After the tube is tilted, instability occurs when the

gradient Richardson number Rig = N2/(∂u/∂z)2 at the interface falls below ≈ 1
4
.

The instability has the form of waves which steepen at alternating nodes, overturning

to form billows. The largest vertical velocities observed were one third of the velocity

difference across the interface. Turbulence begins near the centre when the billow

height is about one third of its wavelength (twice the density interface thickness).

The turbulence quickly fills the billow, which then spreads vertically by entraining

fluid above and below. The edges of the turbulent region spread at a rate of ∆U/5,

where ∆U is the velocity difference between the top and bottom layers. Growth stops

at a non-dimensional time (starting at the onset of turbulence) τ ≡ g′t/∆U = 1.5
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when Rig = 0.37± 0.12. The decaying turbulence appears isotropic until τ = 3, after

which some re-stratification appears to occur.

Thorpe (1984) showed that the turbulence was due to the sidewalls of the tanks

in these experiments. It seems that there is an additional condition for turbulence

based on the turbulent Reynold’s number. Secondary structures in the billows such

as convective rolls are also thought to be important for turbulence. These highly

dissipative structures may be what leads to turbulence rather than billow collapse

(Thorpe, 1984), but since large scale overturning must still occur I plan to argue

that overturning scale quantities may possibly be used to infer mixing rates even if

these larger scales are not directly responsible for the mixing. This is the goal of

this thesis, and so will be shown through simple models that neglect the small scale

structures within overturns in favour of the larger scales. These models will be tested

with various data sets.

Early estimates of the mixing efficiency by Thorpe (1973) from the increase in

potential energy are consistent with Oakey’s (1982) later oceanic result of 0.24 ×

(1 ± 1
2
). But because Thorpe’s experiments were contaminated by mixing from the

sidewalls, Thorpe (1984) considered this mixing efficiency to be an upper limit for

the K-H instability.

The expected LT signature of a K-H instability, sampled with a CTD probe, varies

according to the evolution stage of the overturn according to Thorpe (1973): LT is

greatest during initial overturning, and the Th profile looks like a single S-shape5.

This denotes a single structure where heavy water overlies lighter water. As the

overturn decays, the density profile is mostly stable with some density fluctuations

that re-order on the scale of the billow. This changes quickly with re-stratification.

At τ = 3.75 the density profile has smaller amplitude fluctuations that would perhaps

resemble many new smaller-scale overturns, each with an S-shape Th profile. Based

on Thorpe’s description, I argue that the average of many profiles should be used to

infer mixing rates from overturn scale quantities.

5An idealized overturn with a Z-shaped Th profile is shown in Figure 3.2
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2.3.2 Persistent Mixing Zones

The interaction of currents and bathymetry is a typical forcing found on the continen-

tal shelf and in estuaries. This may form persistent mixing layers. Large scale shears

such as internal tides may be expected to have similar energetics to near-inertial mix-

ing zones discussed by Gregg (1987) because the forcing time is much longer than

N−1. Gregg (1987) describes these mixing layers as having typical thicknesses from

5–10 m and horizontal extent greater than 1 km. They are energetic, with Reynolds

number high enough to support buoyancy flux (ǫ >15 to 25 νN2) and marginally

high enough to assume isotropic turbulence (ǫ > 200νN2). Overturning occurs over

a sufficiently long time (hours to days) to lead to mixed layers (Gregg, 1987).

For example, completely mixing a stratified layer raises its potential energy by

about N2H2/12, where N is measured using the gradient of the re-ordered overturn-

containing density profile, and approximates the stratification before instability oc-

curred. Assuming that the buoyancy flux is Γǫ with Γ = 1
4
, the time required for

complete homogenization is t = N2H2/12Γǫ. For example, a perhaps typical layer

in the thermocline with H = 5 m, N2 = 10−4 s−2 and ǫ = 1.5 × 10−8W kg−1 needs

t = 15 hours to mix. If mixing persists for many hours, it thus leads to significant

increase in potential energy. Osborn (1980) had this type of process in mind for his

model of TKE production balancing Jb and ǫ, the same for Osborn and Cox’s (1972)

model for heat flux (Gregg, 1987).

These forced mixing layers can be compared to laboratory experiments of grid-

generated turbulence in a shear flow (Gregg, 1987), where the shear provides the

forcing for the mixing subsequent to its initial formation at the grid. After the initial

growth, an inertial-buoyancy balance follows with LT ≈ LO (Rohr et al., 1988).

The mixing layers under a steady forcing can also be compared to oscillating grid

experiments in stratified fluids. When the grid is oscillated faster than N , turbu-

lent intrusions are formed which spread into the interior (Thorpe, 1982; Browand

and Hopfinger, 1985). Strongly mixed layers can be expected to produce such intru-

sions, similar to a continuous collapse. The velocity scale of such a density current is
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(g′H)1/2 where H is the intrusion thickness, g′ is g∆ρ/ρ and ∆ρ is the density differ-

ence between the intruding waters and their environment, about half of the density

difference across the originating mixed layer. The shear associated with the intruding

flow is ≈ (g′/H)1/2, leading to a Richardson number at the boundary of the intrusion

of N2H/g′ ≈ 1. Thus, as the intrusions disturb the surrounding waters, they may

lead to further mixing and entrainment.

2.3.3 Application to Coastal Regions, Thermocline and

Abyss

In the abyssal ocean and in the thermocline, the internal wave field occasionally

has breaking waves when the Richardson number becomes critical. This occurs over

short time scales of order N−1, which is of the same order as the turbulence time

scale (say u′/LT ). In this case microstructure models of buoyancy flux may not be

applicable because the assumptions of steady homogenous turbulence do not hold. It

is hoped that averaging could compensate for this (Gregg, 1987). The observation

of overturning events with an instrument such as a CTD is also quite difficult in the

abyss because of the small overturning density fluctuation expected (shown later in

this chapter) and the difficulties of sampling at depth.

Estuaries and coastal regions are mostly mixed by shears with long time scale

compared to N−1 (for example the tidal period is long compared to N−1). The

Osborn model for Kρ and the Osborn-Cox model for Kheat are consistent with these

shear structures. Measuring overturn scales is much easier than in the abyss or

oceanic thermocline because of the shallow sampling, larger overturning scales and

higher density gradients. CTD sampling through energetically forced layers should

thus lead to a good estimate of the mixing; this will be the focus of many chapters in

this thesis. Persistent mixing layers are also found in the thermocline (Gregg et al.,

1986); in this case overturn measurements can possibly be used in cases of strong

mixing when instrument resolution is adequate (this is briefly discussed later in this

chapter).
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In summary, overturn scale measurements are more likely to lead to pratical es-

timates of mixing rates in energetic areas than in the abyss. New models (two and

three) presented in the next chapter link buoyancy flux and mixing efficiency of per-

sistent overturning to overturn scale measurements, and are applicable to persistent

mixing layers discussed here, with further restrictions to be imposed when laying

down the model assumptions.

2.4 Available Potential Energy of the Fluctuations

The Available Potential Energy of the (density) Fluctuations of overturns, called the

APEF and denoted ξ, is also a large scale variable linked to buoyancy flux. Its use

will be extensive in the thesis, and so it is defined and explained here.

2.4.1 Definition and Alternative Formulation

Dillon (1984) defined the APEF, ξ, as the depth-averaged difference of potential

energy per unit mass between a measured density profile ρ and the corresponding

re-ordered profile ρ◦. We can write this as

ξ =
1

H

g

ρ

∫ H

0
ρ′z dz (2.23)

where g is the acceleration of gravity, H is the integrated depth, ρ is the average water

density, and ρ′(z) = ρ(z) − ρ◦(z) is the “Thorpe fluctuation”, the amplitude of the

density instability. The re-ordered profile ρ◦ was introduced in Section 2.2.2 because

it is also used to calculate Thorpe displacements. It is the state of lowest potential

energy to which the measured profile can evolve adiabatically, and so is chosen as the

reference level against which density fluctuations are evaluated. For measurements

uniformly spaced at depths z(i), the APEF, in J kg−1, is6:

ξ =
g

n ρ

n
∑

i=1

z(i) ρ′(i) (2.24)

6Equation (2.24) is modified from Dillon (1984) where temperature was used instead of density.
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The definition of ξ can be written in another form. First write (2.24) as
∑

zρ(z)−
∑

zρ◦(z). Then, the index of the second summation is changed such that the point

at z +Th(z) is summed instead of that at z. This is valid as it only changes the order

in which the points are summed. The APEF becomes
∑

zρ(z) −
∑

[z + Th(z)]ρ◦(z +

Th(z)). From the Thorpe displacement definition, this becomes:
∑

zρ(z) −
∑

[z +

Th(z)]ρ(z) so that

ξ =
g

n ρ

n
∑

i=1

−Th(i) ρ(i) (2.25)

This form emphasizes that ξ is the potential energy released in moving heavy water

down and light water up in the re-ordering of the measured profile.

Equations (2.24) and (2.25) both sum products of fluctuations Th or ρ′ and profile

quantities ρ or z. These last quantities are not completely determined, in the sense

that any constant can be added to them, and (2.24) and (2.25) must still hold. The

summation must therefore be made over points such that
∑

Th or
∑

ρ′ is zero; in

that way, an added constant cancels out. This is the only restriction to evaluate ξ

over depth intervals: that the
∑

Th or equivalently
∑

ρ′ must be zero over the points

for which ξ is evaluated. This is true, although not exclusively, when the evaluation

interval encloses overturns completely.

2.4.2 Approximations

The calculation of ξ over fixed depth bins is made difficult by the requirement that

fluctuation summation be done over spans that include all of a disturbance. For

this reason, approximations of ξ were derived and will be shown here. Other uses

for these approximations include scaling arguments and estimation of ξ from bin-

averaged archived data for which ξ was not calculated. These are used in Chapters 4

and 5.
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Point-by-Point Two-Point Exchange Approximation

Assume two unstable points with density difference ρ′ separated by a distance Th can

both be moved to their stable re-ordered position by exchanging places. The exchange

involves a potential energy change per unit mass of g ρ′ Th/ρ, one half of which can

be attributed to each point involved. If all unstable points come in such pairs, then

the profile can be re-ordered by two-point exchanges where points are moved no more

than once. The potential energy change at each point, called the two-point exchange

APEF, is7

ξ(i) ≈ −
g

2ρ
ρ′(i) Th(i) (2.26)

If a linear re-ordered density profile is assumed, then ρ′(i) = Th(i)(∂ρ◦/∂z) in (2.26)

and ξ is estimated as 1
2
N2Th(i)2 (= 1

2
N2L2

T when suitably averaged) where N is the

buoyancy frequency of the re-ordered density profile.

This two-point exchange formulation (2.26) is an approximation. The sum of

(2.26) over the profile is different from (2.24) because inversions cannot always be

re-ordered using a single series of two-point exchanges. For example, the point at z(i)

may get exchanged with the point at z(j) to go to its re-ordered location, but then

point j exchanged to depth z(i) may not be in a stable re-ordered location, so it may

have exchanged with some other point. The energy change in secondary exchanges

is not taken into account in (2.26). Dillon and Park (1987) show that for their data

the method errs by less than 2% averaged over complete profiles, increasing to 14%

7Equation (2.26) is equivalent to Equation (2) in Dillon and Park (1987)
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error over individual overturns.8

Linear Profile Approximation

As stated after (2.26), the assumption of a linear re-ordered density profile reduces

(2.26) to

ξ ≈
1

2
N2L2

T (2.28)

Estimating LT by ρ′21/2
/(∂ρ◦/∂z)

If LT is not available, then it could be scaled from Thorpe fluctuations ρ′ (e.g. in

grid-turbulence experiments in chapter 4) and the mean gradient as ρ′21/2
/(∂ρ◦/∂z)

and ξ is approximated as

ξ ≈
1

2

g

ρ

ρ′2

∂ρ◦/∂z
≈

1

2

[

g

ρ

]2
ρ′2

N2
(2.29)

Local Density Gradient Approximation

Crawford (1986) finds that 1
2
N2L2

T over-estimates ξ by a factor of 2.8 when N2 is

calculated over a layer enclosing both overturning and non-overturning intervals. This

is assumed to be caused by locally smaller N within overturns than in the layer

surrounding them.

In an attempt to correct for this effect, if ξ is not directly calculated, it is now

hypothesized that the mean local gradient within overturns of a layer can be estimated

8It is likely that the approximation (2.26) holds so well because it may sum to (2.24) over the
profile even if the profile cannot be re-ordered using a single series of two-point exchanges. This
occurs when the re-ordered density profile is linear over the span of each overturn and the sampling
interval is constant. Taking ξ to be the average of (2.24) and (2.25), we get

ξ =
1

2

g

ρ

∑

(ρ′z − ρTh) (2.27)

The Thorpe fluctuation ρ′ = ρ− ρ◦ is transformed using the definition of the Thorpe displacement,
ρ(z) = ρ◦(z + Th(z)), to ρ′(z) = ρ◦(z + Th(z)) − ρ◦(z). The re-ordered profile is assumed to be
linear so this becomes ρ′(z) = Th(z)[ρ◦(z) − ρ◦(0)]/z where ρ◦(0) is the density at the surface.
Substituting into (2.27) with summation over the complete overturn, ρ◦(0) cancels out. This leaves
ξ = g/2ρ

∑

ρ◦Th − ρTh = − (g/2ρ)
∑

ρ′Th which is equal to (2.26).
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as ρ′2
1/2

/LT . In this case, ξ is approximated by

ξ ≈
1

2

g

ρ
ρ′21/2

LT (2.30)

resembling the two-point exchange approximation (2.26), but using layer-averaged

properties.

2.4.3 A Test on CTD Data

The approximations of ξ (2.26), (2.28), (2.29), (2.30) are tested using CTD profiles

sampled in the St. Lawrence estuary in July 1988. Nine consecutive CTD profiles

taken at 4 minute intervals sampled a mixing layer of order 10 m thick. The CTD

profiler was lowered at 50 cm s−1 to obtain ‘oversampled’ data at 2 cm intervals (the

physical size of the temperature and conductivity sensors, as well as their separation,

are slightly greater than this 2 cm sampling interval, such that adjacent values are

expected to be correlated). The profiles are the first nine profiles of a layer discussed

in chapter 7; see the boxed area in Figures 7.7 and 7.8, and temperature profiles and

T–S relation in Figure 7.9.

To summarize, the approximations are based on these assumptions

• (2.26) ξ ≈ −
∑

i
[

g
2ρ

ρ′(i) Th(i)
]

is half of the potential energy increase in every

substitution of a point with the one located at the first’s re-ordered position.

Secondary exchanges are neglected. All data from the profiles are required to

calculated this, there is thus little advantage in using it rather than the definition

form of ξ.

• (2.28) ξ ≈ 1
2
N2L2

T assumes that N2 is linear and represents the density gradient

of the re-ordered profile within the overturn. Bulk properties (layer averages)

can be used for LT and N .

• (2.29) ξ ≈ 1
2

[

g
ρ

]

ρ′2

N2 assumes that the (possibly unmeasured) Thorpe scale is

well approximated by LT = ρ′21/2
/(∂ρ◦/∂z). Bulk properties can be used for

LT and N .
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• (2.30) ξ ≈ 1
2

g
ρ
ρ′2

1/2
LT assumes that the density gradient within overturns is

well approximated by ∂ρ◦/∂z = ρ′21/2
/LT . The advantage is that N2 does not

enter into (2.30) to bias toward the higher values of stratification found outside

of the overturns.

Figure 2.1 shows the approximations of ξ, plotted against the definition values of

ξ evaluated using (2.24). In panels on the left-hand side, each data point represents

a separate overturn. The rms quantities LT , ρ′2 and ρ′Th were calculated within

each of the 346 separate overturns found9 which consisted of more than 10 points.

The stratification N2 was also calculated only within the span of each overturn.

Regressions in logarithmic space show that the slope of the approximated APEF

versus ξ is never significantly different from one; therefore the regressions with forced

slope of one are used. All four approximations have (unquantified) little scatter and

a coefficient usually only a few percent away from one. All four approximations are

judged to do very well.

Looking at the above assumptions, the success of the methods means that when

evaluated and averaged over the span of a single overturn

• N2 and therefore (∂ρ/∂z) within an overturn are both well approximated by a

linear regression on the re-ordered density profile because (2.28) and (2.29) hold

over overturns (assuming LT would not be biased by re-ordering in any case).

• That the density gradient within an overturn is well approximated by ρ′21/2
/LT ,

where these rms quantities are calculated over that overturn, because (2.30)

holds over separate overturns.

In the right-hand panels of Figure 2.1, the rms quantities LT , ρ′2 and ρ′Th were

calculated over the entire depth span of the mixing layer for each overturn. This

yielded only 9 averages. The stratification N2 is also evaluated by linear regression

9Defined as the smallest group of consecutive points which may be re-ordered without moving
any other point in the profile.
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Eq (2.28)
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Eq (2.26)
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Eq (2.30)
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y = (0.89 ×/÷ 1.08) x

Figure 2.1: Four approximations of the APEF, ξ, are evaluated using data from 9
CTD casts in the St. Lawrence estuary. The panels on the left are calculated using
statistics averaged over individual overturns; those on the right used one average per
profile over the entire layer.
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on the re-ordered density profile over the entire layer depth. This includes overturning

and non-overturning depth spans.

Crawford (1986) found that N2 evaluated over a layer enclosing overturns is higher

than N2 within only the overturns. This result is confirmed here. Both (2.28) and

(2.29) use the density gradient in their approximations, and both are biased because

of it. It is found that the density gradient within overturns is on the average 2 to 2.4

times smaller than over the entire mixing layer.

The fact that N2 is lower within overturns than in surrounding waters could be

interpreted in different ways: i) overturns occur preferentially where N is low; ii) the

overturn has done some mixing and thus a lower stratification is found; iii) strain

is associated with Kelvin-Helmholtz billows such that a vertical transect through

the billow shows lower stratification than found after billow collapse (recall that in

section 2.3.1, turbulence was quoted as beginning when billow height was twice the

density interface thickness (Thorpe, 1973)). Since it is not easy to quantify these

effects, especially for oceanic data for which the driving force is not always known,

the difference in N is noted but not further explained.

Not surprisingly, the two-point exchange approximation (2.26) does almost per-

fectly. Recall that it is an average of products over all points of the overturns. This

approximation requires that all original data is available in order to use it because

ρ′Th is not usually a calculated quantity in archived data.

A New Approximation

The approximation ξ ≈ 1
2
(g/ρ) ρ′2

1/2
LT is within 10% of ξ. This implies that the

average density gradient within several overturns can be well estimated by ρ′2
1/2

/LT .

This is a new and very useful result: for example, Dillon (1982) tables layer-averaged

overturning data for mixing layers; he does not table ξ, but he does table both LT and

ρ′21/2
such that ξ can be approximated much better than by using N2L2

T /2, which

would have previously been used.
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2.5 Requirements to Resolve Overturns

CTD profiles must have adequate density and depth resolution to measure overturns

of a given energy. The noise level for ξ is estimated from (2.26) as (g/2ρ) ρ′
min Thmin,

where ρ′
min and Thmin are the minimum measurable Thorpe fluctuation and Thorpe

displacement.

Denoting depth resolution as δz and density noise as δρ, in most cases (g/2ρ)δz δρ

is a lower bound on the ξ noise level. There are actually two separate cases to consider:

low stratification where δρ is the limiting factor, and high stratification where δz is

the limiting factor.

High Stratification

Assume that stratification is high enough that the density difference between two

consecutive points in the re-ordered density profile is greater than the noise level

δρ. This condition is expressed as δρ/δz < ∂ρo/∂z. In this case, depth resolution

limits the minimum measurable Thorpe fluctuations and Thorpe displacements to

δz(∂ρo/∂z) and δz respectively. The minimum APEF measurable is then

ξnoise =
g

2ρ

∂ρo

∂z
(δz)2 (2.31)

Low Stratification

Assume now that stratification is low, such many consecutive density points of the re-

ordered profile are not significantly different. This condition is expressed as δρ/δz >

∂ρo/∂z. In this case, density resolution limits the minimum measurable Thorpe

fluctuations and Thorpe displacements to δρ and δρ/(∂ρo/∂z) and respectively. The

minimum APEF measurable is then

ξnoise =
g

2ρ
(
∂ρo

∂z
)−1 (δρ)2 (2.32)
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Minimum Measurable APEF

Listing (2.31) and (2.32) together, the minimum measurable APEF is

ξnoise = g
2ρ

(∂ρo

∂z
)−1 (δρ)2 if δρ

δz
> ∂ρo

∂z

ξnoise = g
2ρ

∂ρo

∂z
(δz)2 if δρ

δz
< ∂ρo

∂z

(2.33)

If stratification (∂ρo

∂z
), depth resolution (δz) and noise level (δρ) are known, (2.33)

gives the minimum ξ that can be detected. For example,

• At the base of the thermocline where N = 0.005 s−1 a density probe capable

of measuring fluctuations of 10−3 kg m−3 at 1-cm intervals, will only measure

overturns bigger than 0.4 m (= δρ (∂ρo/∂z)−1), of ξ > 2 × 10−6 J kg−1 and

ǫ > 10−8 W kg−1, using the approximate relation ǫ = ξN .

• In an energetic estuary with a high stratification of N = 0.03 s−1, depth

resolution limits the smallest measurable overturn. The error levels are then

ξ = 5 × 10−8 J kg−1 and ǫ > 1.5 × 10−9 W kg−1.

Note that both these examples used the relation ǫ ≈ ξN which is derived from

LO ≈ LT ; it will be shown in this thesis that this is not a general result, and is used

here merely as a scaling argument. Also, the kinematical model leading to LO ≈ LT

assumes that sporadic occurrences of breaking internal waves leads to overturning.

The Thorpe scale is thus a time average. If overturning were to occur during only

10% of the time, then the overturning energy is ten times higher than average during

overturning; noise levels set here should be compared with this latter value, if it can

be approximated.

These error levels for dissipations can be related to eddy diffusivities by Kρ =

ΓǫN−2 (Osborn, 1980) using a mixing efficiency of Γ = 0.265 (Oakey, 1985). For the

previous examples, the minimum detectable Kρ is 10−4 m2 s−1 for the thermocline

and 4× 10−7 m2 s−1 for the estuary. The strong mixing in the estuary should be well

resolved, but the thermocline example may only have sufficient density resolution to

measure the likely weak mixing (estimated at Kv = 10−5 m2 s−1 (Garrett, 1984))
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if overturning events occur less than 10% of the time (shorter overturning fraction

implying larger and easier to measure overturns).

2.6 Summary

This chapter started with a review of microstructure models parameterising mixing,

as well as a traditional view of the Thorpe scales being related to microstructure.

The APEF was also introduced.

In summary, it was noted that

• Puffs are consistent with the kinematical model of occasional breaking internal

waves, and less so with the mixing models used to interpret microstructure

mixing measurements because of the assumptions of homogeneity and steady-

state (averaging is typically assumed to overcome these requirements).

• Persistent mixing zones, and especially strong mixing found in surface and bot-

tom boundary mixing layers, are more likely to fit mixing model assumptions,

thus perhaps requiring less averaging. (Overturning scale models presented in

chapter 3 will apply to these persistent mixing zones).

• Some initial scalings were presented to test whether overturning data should

resolve an expected level of mixing.

The main results are

• A new APEF approximation using layer-averaged quantities was shown to hold

very well. It is ξ ≈ 1
2

g
ρ
ρ′21/2

LT

• The commonly used approximation N2L2
T /2 only holds when N2 is representa-

tive of the density gradient of the re-ordered profile within the overturn.

• This previous assumption was shown not to hold using mixing-layer averages

of data from the St. Lawrence estuary, in agreement with earlier findings of
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Crawford (1986). In the present case, stratification within overturns is 2 to 2.4

times smaller than the layer average.



Chapter 3

Relating Buoyancy Flux And

Dissipation of Turbulent Kinetic

Energy To Overturn Scales

In this chapter, three models for buoyancy flux, Jb, and turbulent kinetic energy, ǫ,

are derived; some derivations are old and some are new, and the new derivations

lead to existing empirical models. The term ‘model’ is used loosely here, perhaps as

Osborn’s (1980) useful derivations are also coined a model. They parameterize mixing

quantities in terms of simple physical mechanisms. This permits interpretation of the

conditions necessary to apply them to the ocean. Figure 3.1 shows a diagram of

the three models. The assumptions required for each model are listed in summary

Table 3.1 (found at the end of the chapter) and will be tested in subsequent chapters.

The correspondence between the Ozmidov scale, LO, and the Thorpe scale, LT ,

yields model one. This model is not new. In fact, it is perhaps the most commonly ac-

cepted view held by the mixing community (see Crawford (1986) for a review). Model

one relates overturning to the dissipation of turbulent kinetic energy. It assumes both

a constant mixing efficiency, Γ, and a balance between inertial and buoyancy forces.

This latter concept, called inertial-buoyancy balance, simply is discussed in this chap-

ter. In Figure 3.1, the measurement of overturn sizes LT is translated laterally to an

36
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L2
T L2

O

Model 1

LT ≈ LO

N2

2
N3

ξ ≈ 1
2
N2L2

T ǫ ≡ N3L2
O2N

Model 1
ǫ ≈ 2ξN

Jb

t−1
o

Γ
Model 1

Models 2 and 3

Models 2 and 3

Model 2: to = TKE
ǫ ≈ 3

2
Lt

u′
≤ N−1

→ Jb ≈
2
3
ξNFrt

Model 3: to = TKE
ǫ ≈ Lh

u′
≈ N−1

→ Jb ≈ ξN

where Frt = u′/NLT

and u′ ≈ (ǫLh)
1/3

and u′/LT ≈ 0.4 (∂U/∂z)

Model 1: Γ = constant

Models 2 and 3:

Γ ≈ (Lh/LO)4/3 (Lt/Lh)
2

≈ (1
3

to 1
2
) Rit

where Rit ≈ 6.2Rig

Figure 3.1: Diagram of the three models derived in this chapter. Model one: Tradi-
tional view linking LT to LO, and therefore ξ to ǫ via a decay time N−1. A constant
mixing efficiency is assumed; Model two: New model for growing isotropic turbu-
lence, linking ξ to Jb via a decay time ∝ LT /u′ ∝ (∂U/∂z)−1; Model three: New
model for anisotropic inertial-buoyancy balanced turbulence, linking ξ to Jb via a
decay time N−1; Mixing efficiency for models two and three depend on Rit, which
can be inferred from Rig or ǫ and ξN . Boxes indicate measurable quantities, and
triangles are multipliers that relate those quantities to each other.
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Ozmidov scale, which is a measure of the rate of dissipation of TKE. By assuming a

constant mixing efficiency Γ, the buoyancy flux is estimated from the estimate of ǫ.

It will be shown in subsequent chapters that typical continental shelf mixing is not

characterized by a constant mixing efficiency where this model should thus not be

used. It may however be relevant to breaking internal waves in the abyss, which are

thought to occur at inertial-buoyancy balance and thus at constant mixing efficiency

(Ivey and Imberger, 1991).

Model two is new. It relates overturning directly to buoyancy flux for isotropic

growing turbulence. Both mixing efficiency and balance between inertial and buoy-

ancy forces depend on the character of the turbulent flow, parameterized by the

turbulent Froude number, Frt. The results are similar to Ivey and Imberger’s (1991)

empirical result based on laboratory experiments (reviewed in Appendix B); the inter-

pretation of the results differs substantially from Ivey and Imberger’s. In Figure 3.1,

the measurement of the potential energy of the overturns (APEF) is related directly

to buoyancy flux through a turbulent Froude number dependent decay time, usually

smaller than N−1 (where 2πN−1 is the buoyancy period). It will be shown that this

time scale can be related to the inverse of the shear if shear drives the turbulence.

Model two should apply to cases of strongly driven mixing, where overturning scales

are thought to be isotropic and growing; in chapter 7, we apply this model to an

apparently new mixing layer and another known to be new because it is forced by a

passing soliton.

Model three is an extension of model two for the case of steady-state mixing at

inertial-buoyancy balance. The inertial-buoyancy balance sets the decay time scale.

The turbulence is allowed to be anisotropic, which will affect the mixing efficiency.

This model makes a prediction for buoyancy flux similar to Dillon and Park’s (1987)

empirical result. In Figure 3.1, the multiplication of the APEF by the inverse of the

decay time still equals buoyancy flux, as for model two, but the decay time is now

constant and approximately equal to N−1 due to the inertial-buoyancy balance. The

rate of dissipation of TKE can be estimated from Jb from the mixing efficiency only
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if the degree of isotropy is known (because it determines mixing efficiency in model

three). Model three is expected to hold for mixing layers forced for a long time, but

over a vertical scale smaller than the Ozmidov scale. This includes the surface layer,

perhaps the bottom boundary layer and others mixing zones forced by depth-specific

shears such as internal tides.

All three models will be compared to data in various mixing regimes in latter

chapters, where it will also be shown that the traditional view—the first model—is

a special case in the other two models. The latter two models apply in different

circumstances, but it is difficult to differentiate between them with the oceanic data

sets presented in this thesis.

These models do not offer a complete view on mixing. For example, recent work

by Gregg (1989) attempts to quantify mixing directly as a function of the forcing

shear. In contrast, work presented here relates an overturn scale mixing signature

to small scale mixing; measurements of the these signatures (APEF) are required for

the parameterization. The methods presented here are still useful because provide

mixing rates and yet are simpler to execute than microscale measurements of mixing.

The mixing is parameterized over individual overturn measurements. The quest

for a basin value of eddy diffusivity or buoyancy flux is then an exercise in averaging

which is not discussed in this thesis. Work on the size and frequency of overturns in

various mixing regimes would complement the parameterisations presented here.

3.1 Model One; Overturning Related to Dissipa-

tion of Turbulent Kinetic Energy

Garrett’s (1989) derivation, showing the link between Ozmidov and Thorpe scales,

was overviewed in the previous chapter. It is presented again in detail because the

required assumptions lead into the second model in the next section. The first two

models will be contrasted using the following derivations.

If a ‘perfect’ overturn is created as in Figure 3.2A and mixes to completion as in



40

Figure 3.2C, then the potential energy per unit mass of the water column within the

overturn is raised by N2H2/12. This is equal to the time-integrated buoyancy flux

within the overturn. The buoyancy flux Jb = g
ρ
w′ρ′ is, related to the vertical eddy

diffusivity Kρ through the definition of Kρ

Jb = KρN
2 (3.1)

Garrett (1989) linked the size and frequency distribution of overturns to Kρ through

Kρ =
1

12
γmixH

2t−1
e (3.2)

where H is the overturn size or layer thickness, te is the time between overturning

events and perfect homogenisation leads to γmix = 1 or γmix < 1 if mixing is in-

complete (Note that the ‘mixing efficiency’ γmix is different from Γ = Jb/ǫ because no

assumption is made of the relative quantity of kinetic to potential energy dissipation).

Garrett’s use of (3.2) shifts from the mixing done by a single overturn to a time-

average, suitable to the entire thermocline. Garrett then relates the layer thickness

H to the Thorpe scale, a quantity measured in the field. The Thorpe displacement,

shown in Figure 3.2B, varies linearly between −H to +H for a single overturn. The

squared Thorpe scale is the rms value of that, and is equal to L2
T = H2/3. If the

water column is sampled many times between successive overturning events, the time-

averaged Thorpe scale becomes 〈L2
T 〉 = (H2/3) to/te where to is the decay time of

the overturn. The brackets on 〈L2
T 〉 indicate time-averaging. The subtle difference

between space and time averaging is briefly discussed in Section 3.2.1.

Combining the expression for 〈L2
T 〉 into (3.2), the time between events cancels out,

leaving

Kρ =
1

4
γmix 〈L

2
T 〉 t−1

o (3.3)

This kinematical expression for Kρ can be equated to the Osborn model Kρ = Γǫ/N2,

after substituting ǫ = L2
ON3, yielding

Kρ = ΓL2
ON =

1

4
γmix 〈L

2
T 〉 t−1

o (3.4)
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H

H

H

CBA

Figure 3.2: Idealized overturn creating a mixed layer. A- Density profiles before
(thin line) and during (thick line) the overturn. Potential energy difference between
profiles is H2N2/6; B- Thorpe displacement profile through the overturn. The rms
squared Thorpe displacement is H2/3; C- density profiles before overturn (thin line)
and after complete homogenisation of the layer by mixing (thick line). Potential
energy difference between profiles is H2N2/12.
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If mixing efficiency is a constant of approximately Γ ≈ 1
4
, as found by Oakey (1982;

1985)1, if the decay time of an overturn scales with buoyancy as to ≈ N−1, and if

mixing is complete (γmix ≈ 1), then the averaged Thorpe scale should be equal to the

Ozmidov scale 〈L2
T 〉 ≈ L2

O.

Formulation of Model One

The above arguments lead to model one, equating LT to LO. While assumptions

of turbulence homogeneity and steady-state (as well as no redistribution terms) are

typically made in microstructure models (inconsistently with the kinematic model of

sporadic K-H instabilities forced by random superposition of internal waves), Gar-

rett’s (1989) derivations show that time averaging suitable to the entire thermocline

leads to LO ≈ LT even assuming that overturning is not homogeneous nor in a steady-

state. The model implies a link between overturn size and dissipation of turbulent

kinetic energy as

ǫ ≈ L2
T N3 (3.5)

Note that since the Available Potential Energy of the Fluctuation, ξ, is approxi-

mately equal to N2L2
T /2, the first model can also be written as ǫ ≈ 2 ξN .

3.2 Background of Models Two and Three: Over-

turns Linked to Buoyancy Flux

Model one links overturn scales LT or ξ to the rate of dissipation of kinetic energy.

The usual kinematical model for this model is of random superposition of internal

waves leading to breaking at critical Richardson number.

In this section the basis for new models is shown. I argue here that these overturn

scale quantities are related directly to buoyancy flux, rather than to ǫ. The APEF

1Oakey (1982; 1985) did not assume full isotropy; doing so increases his mixing efficiency by 50%.
He also assumed that unmeasured buoyancy flux was equal to measured potential energy dissipation,
which is the assumption of the Osborn-Cox model
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is shown to be related to Jb via a suitable decay time. Models two and three are

end members of this new approach; they will be differentiated by the decay time and

isotropy conditions.

The physical concepts behind these two models will constrain their application

to a few types of turbulence: energetic, isotropic growing turbulence, and energetic

anisotropic steady-state turbulence. These can only apply to shear-forced mixing

layers where overturning is expected to be continuously extracting energy from the

mean shear. The view is not of random internal waves breaking at a balance between

inertial and buoyancy forces (inertial-buoyancy balance), but rather of the evolution

of a uniform mixing layer much more homogeneous and steady, where the balance be-

tween potential and kinetic energy associated with isotropic inertial-buoyancy balance

is not guaranteed.

In this section, the parent relation Jb = ξ/to to both models two and three is

established by re-examining Garrett’s (1989) assumption of constant mixing efficiency,

and also by looking at the temperature variance equation.

3.2.1 First Line of Argument: Garrett’s Derivation Revisited

Garrett’s argument relating LT (and thus ξ) to ǫ is easily modified to relate ξ to

buoyancy flux instead of to ǫ.

Garrett relates (3.3) to ǫ through Kρ = Γǫ/N2 using a constant mixing efficiency.

Instead, from (3.1) and (3.3) and by assuming γmix = 1, one could write

Jb =
1

4
〈L2

T 〉N2t−1
o ≈

1

2
〈ξ〉 t−1

o (3.6)

where 〈ξ〉 is a time-averaged quantity, approximately 1
2
N2〈L2

T 〉. This relates a time-

averaged buoyancy flux directly to ξ through a decay time to.

Alternatively, one may start at the beginning of Garrett’s derivations. The form

for Kρ as (3.2) assumes that the integrated buoyancy flux is responsible for the in-

crease in mean potential energy of the water column within the overturn. It is then

simpler to relate the buoyancy flux directly to the change in mean potential energy
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during the time between overturning events te. The APEF of the overturn in Fig-

ure 3.2A is twice the potential energy change observed between the final mixed state

and initial state in Figure 3.2C. Thus the formulation in terms of Kρ can be skipped

and, using the half of the APEF to quantify the final increase in potential energy of

the water after complete mixing of the overturn, the following expression for buoyancy

flux can be written directly as

Jb =
1

2
ξt−1

e (3.7)

The difference between (3.6) and (3.7) is the averaging method. The first divides

an average potential energy by the true decay time of an event. The second considers

only the energy of a single event and divides by the time separating events. Both yield

the same averaged buoyancy flux. If one uses Jb = 1
2
ξ t−1

o , using ξ from one overturn,

then this becomes the buoyancy flux from that particular overturn. An ensemble

average of many such overturns, including profiles where none were observed, would

yield the same average as the other forms.

3.2.2 Second Line of Argument: Temperature Variance

Equation

Let us now consider the temperature variance equation to argue for (3.7) without

scaling arguments.

Suppose that density fluctuations are directly proportional to temperature fluc-

tuations, so that buoyancy flux can be written as Jb = −αgw′T ′. The temperature

variance equation is (Tennekes and Lumley, 1972; Osborn and Cox, 1972; Dillon,

1982)
∂

∂t
T ′2 = −2 w′T ′

∂T

∂z
− χθ (3.8)

where the divergence terms have been neglected (an ensemble average is required to

assume this); Further assumptions include isotropy and that no horizontal gradients

exist (Dillon, 1982). While the time-derivative term is also usually neglected, it is

kept here to show the connection of the APEF to the dissipation of potential energy
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in a later derivation.

Definition of Turbulent Fluctuations

The turbulent fluctuations T ′ and w′ in (3.8) require a definition. Dillon (1982) used

the re-ordered profile as the base state for temperature fluctuations. In such a case, T ′

(or ρ′) in temperature variance equations or turbulent kinetic energy equations refer

to Thorpe fluctuations. The temperature variance T ′2 is guaranteed to be zero for

this choice of a base state when there are no overturns to create fluctuations. Also,

profile averages through an overturn have T ′ = 0 using Thorpe fluctuations. The

notation used so far is thus appropriate, as it is consistent with Thorpe fluctuations

used in the rest of the thesis.

If temperature and density fluctuations are defined as overturn-scale variables,

then so too must turbulent velocities be, as their cross-correlation determines the

buoyancy flux. This is consistent with the Kolmogorov turbulent kinetic energy spec-

trum, where the energy-containing scale is the size of the overturn (Tennekes and

Lumley, 1972). In typical CTD sampling, turbulent velocities w′ are not measured;

therefore these will be infered from other measurements, but are assumed to be of

overturn scale.

Comparison of Terms

Dillon (1982) showed that the turbulence is active rather than ‘fossil’, a term used by

Gibson (for example, Gibson (1982)) to describe signatures of old turbulence no longer

mixing. To do so, Dillon compared the terms ∂T ′2/∂t and χθ in (3.8) to assess the

importance of gravitational collapse in the temperature variance equation, choosing

N−1 as a re-stratifying time scale2. The comparison is then between χθ and NT ′2

and is shown in Figure 3.3. The data series in Figure 3.3 are explained in section C.1.

2Dillon calculated N2 on the re-ordered profile as an average over a layer which encloses several
overturns. This is discussed in depth in chapter 5, as it is likely to over-estimate N2 by a factor of
2 to 3 (e.g. Crawford’s (1986) factor and the factor of 2.4 to 2.8 introduced in chapter 2).
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Dillon interpreted this figure for the combined series A B and C as

χθ = (3 to 10)NT ′2 (3.9)

indicating that the destruction of temperature variance from turbulent diffusion is

much faster than what is expected from gravitational re-stabilization3. Dillon’s as-

sumption is then that additional fluctuations must be continually produced from the

production term in (3.8) to balance their dissipation by χθ because the restratification

time scale (and therefore the rate of change of temperature variance) is most certainly

greater N−1/3. Gibson’s argument that temperature fluctuations survive after the

turbulence is incompatible with Dillon’s result that temperature variance is created

and dissipated in a time much smaller than N−1.

Potential Energy Equation

Equation (3.8) can be easily transformed into a potential energy equation. Thorpe

fluctuations were shown to be related to ξ in chapter 2, as ξ is the measure of the

potential energy contained within those fluctuations. In addition, χθ is related to

the dissipation of potential energy. Multiplying (3.8) by αg/(2∂To/∂z), where To is

the re-ordered temperature profile used to obtain the gradient, a potential energy

equation is obtained as (Dillon, 1984)

∂

∂t
[
αgT ′2

2∂To

∂z

] = −αg w′T ′ −
αgχθ

2∂To

∂z

(3.10)

The term on the left of (3.10) approximates the rate of change of ξ assuming

LT ≈ T ′21/2
/(∂To/∂z) (See section 2.4.3). The first term on the right is the rate

of production of potential energy (the buoyancy flux) and the second is the rate of

dissipation of potential energy, equal to 3N2κT Cx (Dillon, 1984).

3Figure 3.3 also indicates data for which I have calculated that T ′2
1/2

/(∂To/∂z) < 0.2LT . These
data are circled in Figure 3.3. The first term in (3.10) under-estimates ξ by a factor of 5 or more for
these points. The proportionality relation must hold even better between ξ N and Jb than Figure 3.3
shows.
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Series C
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      ε / ν N2  < 45

y = (0.43 ×/÷ 11.44) x1.11 +/- 0.22
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200 <  ε / ν N2  

100 <  ε / ν N2  < 200

45  <  ε / ν N2  < 100

      ε / ν N2  < 45

y = (0.04 ×/÷ 2.90) x0.91 +/- 0.08

y = (0.14 ×/÷ 1.30) x

Series B

200 <  ε / ν N2  

100 <  ε / ν N2  < 200

45  <  ε / ν N2  < 100

      ε / ν N2  < 45

y = (0.10 ×/÷ 7.50) x1.01 +/- 0.19

y = (0.09 ×/÷ 1.28) x

Figure 3.3: Comparison of NT ′2 vs χθ. The long-dashed lines in the series A, B and
C panel are NT ′2 = 3χθ and NT ′2 = 10χθ, quoted from Dillon as the range of the
scatter. Regressions are on data with ǫ/νN2 > 200. Data are coded according to
turbulent intensity according to the legend; open symbols are well resolved data, filled

symbols are marginally resolved; circled data have (T ′2
1/2

/LT )/(∂T/∂z) < 0.2. Data
are from tables in Dillon (1982); both axes are in ◦C2 s−1. This figure corresponds
somewhat to Figure 7 in Dillon (1982).
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In a steady-state, the rate of change of ξ is zero. This results in the familiar

Osborn-Cox formulation for the heat flux Jb = −αgw′T ′ = −3N2κT Cx, where Cx =

(∂T ′/∂z)2/(∂T/∂z)2 is the one-dimensional Cox number.

Relevance to Buoyancy Flux Model

Although (3.10) and (3.8) are linked through a constant, my interpretation of (3.10)

differs from Dillon’s interpretation of (3.8). Dillon wanted to show that the rate of

change of temperature variance (assuming a buoyancy time scale) must be slower

than the dissipation time scale; my following argument aims to show that the rate of

change of potential energy—without yet specifying the time scale—is tied to buoyancy

flux and dissipation of potential energy at both ends of the size spectrum, and that

the equilibrium implies a proportionality between the potential energy (APEF) and

the in and out fluxes.

Imagine an impossible case where no dissipation of potential energy occurs. Then,

the buoyancy flux, equivalent to throwing heavy particles of water up into the water

column, must accumulate into APEF. No mixing occurs which would permanently

raise the center of mass of the water column and reduce the APEF; mixing can only

occur through the dissipation term. The rate of change of the APEF is therefore Jb.

Imagine now that buoyancy flux is cut off, and that dissipation begins. The stock

of accumulated APEF feeds into dissipation of potential energy, raising the potential

energy of the water column, and the rate of change of the APEF is therefore the

dissipation of potential energy.

If both buoyancy flux and dissipation of potential energy occur, I argue that

buoyancy flux is an overturn-scale quantity and does not feed into dissipation of

potential energy directly; the flow of density fluctuations must go through a pool of

APEF. This is somewhat like a hose filling a punctured swimming pool. If the pool is

filled faster than it empties, the water level increases until the pressure is sufficient to

make the outflow as big as the inflow. A steady-state ensues. If both buoyancy flux

and dissipation exist in a steady-state, the stock—the APEF—must be proportional
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to the flows, in this case buoyancy flux and the rate of dissipation of potential energy,

through a suitable decay time to.

Since (3.8) and (3.10) are related by a constant, a proportionality relation also

exists between ξ and Jb with an assumed timescale apparently proportional to (but

much shorter than) N−1, but which is presumably the same time scale to used in

(3.6)4.

It is assumed that this is valid for single ‘overturns’ in a steady forced mixing

layer where energy comes from production against the mean shear, although it could

be argued that ensemble averaging is required to obtain an average of the APEF, as

this may vary throughout the evolution of the overturning. The application to puffs

(individual K-H instabilities that lead to overturning, mixing and decay) is unclear

because the APEF may only be high in the initial instants of overturning, before

dissipation starts. However, this should not matter to the parameterisation of mixing

because the APEF should nevertheless be representative of the increase in potential

energy of the water column after mixing has completed, regardless of the moment’s

lack of balance between terms. Ensemble averaging simply gives a more stable values

of the APEF.

4Dillon’s argument that the re-stratifying term is small in (3.8) is not necessarily consistent with
my interpretation. What if restratifying time were 3 to 10 faster than N−1? Considering that
Dillon did not find simply that χθ were much greater than the T ′2N−1, but that they were in fact
proportional, this indeed points to a physical relation between the two terms. However, this does not
prove that restratification actually occurs. Restratification, if it did occur, could simply be measured
as negative buoyancy flux. The time-averaged buoyancy flux would then be reduced. My point is
that if buoyancy flux and dissipation of potential energy are physically related to the APEF via a
time scale of N−1, Dillon would have observed a coefficient of unity in (3.9) and might have wrongly
assumed that re-stratification is important. It will be argued in chapter 5 that Dillon’s values of χθ

may in fact be a factor of 3 too high such that χθ ≈ T ′2N−1, in which case Dillon’s argument is not
quite as convincing.
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3.2.3 Summary of Arguments Linking Overturns to Buoy-

ancy Flux

Both Garrett’s revised derivations leading to (3.6) and the potential energy equation

leading to Jb = ξ/to suggest that

Jb =
[

3

4
±

1

4

]

ξ

to
(3.11)

where to is the time scale over which (half of) the potential energy ξ decays into

the dissipation of potential energy, or equivalently the rate at which ξ is supplied by

the buoyancy flux. A definition for to in terms of the TKE will follow shortly. The

range given in (3.11) comes from the fact that in one instance the buoyancy flux is

assumed to provide all the energy difference between the re-ordered and overturned

state (H2N2/6), and in the second instance the buoyancy flux is assumed to equal the

dissipation of potential energy, the sum total of which is the difference between the

overturned state and the well-mixed state (H2N2/12). These two views differ by a

factor of 2, but it is usually assumed that buoyancy flux equals the rate of dissipation

of potential energy. Thus, uncertainty in the physical model itself leads to the factor

of two; the coefficient can be settled-on empirically.

In these models, the APEF represents the potential energy available to the buoy-

ancy flux and to the dissipation of potential energy. The buoyancy flux is thus limited

by the potential energy available for mixing: a completely mixed layer cannot support

a buoyancy flux.

To equate the buoyancy flux term and dissipation of potential energy term to

the decay of the APEF over a time to, it is assumed that the turbulent energy re-

distribution terms can be neglected through ensemble averaging. It is also assumed

that temperature fluctuations are created from overturning against a mean vertical

gradient such that horizontal temperature gradients must be small.
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3.3 Model Two: Growing Isotropic Turbulence

Assuming that buoyancy flux is equal to the dissipation of ξ over a decay time scale,

then what is the time scale? Dillon (1982; 1984) and Dillon and Park (1987) suggest

using to ≈ N−1. This might seem a natural time scale to choose because it is the

buoyancy time scale: the time it takes for water to bob up and down (within a factor

of 2π). It is argued next using the total energy equation that the overturning time

scale provides a better choice for the decay time scale. This results in model two,

linking ξ to Jb.

3.3.1 Derivation of the Decay Time

The APEF, TKE and buoyancy flux are linked by the total energy budget, obtained

by first considering the turbulent kinetic energy equation

1

2

∂

∂t
u′

iu
′
i = S − ǫ − Jb (3.12)

where the overbar denotes volume averaging over overturns and S is the rate of

supply of kinetic energy due to shear production, turbulent and mean advection and

pressure-velocity correlations (Dillon, 1982). This equation can be added to (3.10) to

obtain a total energy equation for the turbulent flow (Dillon, 1984)

3

2

∂

∂t
u′2 +

∂ξ

∂t
= S − ǫ − 3N2κT Cx (3.13)

where isotropy was assumed for the turbulent velocities.

Since the turbulent velocity fluctuations are determinant in both the buoyancy

flux g′w′ and the TKE, the decay time of both the APEF and TKE is assumed to

be the same. Recall the discussion in section 2.1.3 that mixing efficiency Γ = Jb/ǫ

is expected to be of the order of one third or so. This implies that the TKE terms

in (3.13) are expected to be bigger than the potential energy terms because even

if the kinetic energy in the vertical axis equals the potential energy (APEF), there

is three times that amount of kinetic energy in total. The decay time of the TKE
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can therefore be used for the potential energy decay time, because the kinetic energy

may be bigger than the potential energy. It is also parameterizable in terms of the

turbulence. The decay time of ξ is given by

to =
TKE

ǫ
(3.14)

by neglecting the smaller Jb sink to the TKE. This equation is taken as the definition

of to.

Assuming the Kolmogorov turbulent kinetic energy spectrum, E(k) ∝ ǫ2/3k−5/3,

the TKE at any scale k in the sub-range is approximately u′(k)2 ≈ k E(k) ≈ ǫ2/3k−2/3.

Also, since the Kolmogorov spectrum assumes that dissipation is independent of the

length scale, dissipation must therefore scale like ǫ ≈ u′3/L, from u′2 ≈ ǫ2/3k−2/3 where

u′ = u′(k) varies with scale and L is the length scale associated with the turbulent

velocities. Since the TKE of the Kolmogorov spectrum is greatest at the overturning

scale, the largest turbulent velocities measured within an overturn must be associated

with the length scale of the overturn. Therefore, the energy-containing scales provide

a scaling for dissipation. In the case of isotropic turbulence, this becomes ǫ ≈ u′3/LT

where LT is the largest overturning scale. This provides a scaling to relate usually

unmeasured turbulent velocities to the rate of dissipation of turbulent kinetic energy.

This scaling will be shown to hold very well in chapter 4 for grid turbulence.

Using ǫ ≈ u′3/LT in (3.14) yields

to ≈
[

3

2
u′2
]

/

[

u′3

LT

]

≈
3

2

LT

u′
≈

3

2
Fr−1

t N−1 (3.15)

where

Frt =
u′

NLT

(3.16)

Thus, the decay time scale is dependent on the character of the turbulence5, param-

eterized by Frt. This is in contrast to the assumption that to ≈ N−1 in model one

5If the turbulence is not isotropic, it is characterized by w′ < u′ and LT < Lh, where Lh is the
horizontal length scale of the turbulence. Since the energy-containing scales provide the dissipation
scaling u′3/L, then

ǫ ≈ u′3/Lh

because the horizontal lengthscale Lh is associated with the energy containing horizontal velocities
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(Dillon, 1982; Dillon and Park, 1987; Garrett, 1989)Model 1 coincides with model 2

only for the special case of Frt ≈ 1 (the inertial-buoyancy balance, discussed shortly).

3.3.2 Formulation of Model Two: Buoyancy Flux for Grow-

ing Isotropic Turbulence

Combining the simple model for buoyancy flux (3.11) with the expression for the

decay time (3.15) yields the buoyancy flux for isotropic growing turbulence as

Jb ≈
[

3

4
±

1

4

]

2

3
ξ N Frt (3.17)

using (3.15) for to and assuming isotropy.

The turbulent Froude number is important because it affects the buoyancy flux

in model two, but it is typically not measured in the ocean. However, Frt will be

shown to depend on the ratio of ξ/TKE or ξN/ǫ, and later even on Rig, such that it

can be inferred from other measurements. After a brief discussion on the turbulent

Froude number, it will be made clear why this model applies to growing turbulence.

3.3.3 Interpretation of the Turbulent Froude Number:

Isotropic Case

In the isotropic case, the horizontal and vertical overturning scales are the same

(LT = Lh, where Lh is the horizontal length scale of the turbulence), so the turbulent

Froude number Frt is the same as one based on horizontal scales (u′/NLh). The

following discussion applies to the isotropic case only.

The turbulent Froude number is the ratio of the horizontal inertial velocity (u′)

to the vertical buoyancy velocity (NLT ). Assuming isotropy, if this ratio is very high

then the effects of buoyancy on the turbulence can be assumed to be very low. If the

for the anisotropic case. This form conserves the Kolmogorov spectrum and the energy flux across
scales is equal to ǫ. This is taken as the more general result. Although it does not apply to the
isotropic model two, it will apply to the anisotropic model three. This dissipation scaling will be
verified in a later chapter. The decay time to would be written using a turbulent Froude number
based on horizontal scales to = 3

2
(u′/NLh)−1 N−1.
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turbulence has only enough kinetic energy to overcome stratification, then a balance

w′ ≈ NLT exists, where w′ is the vertical turbulent velocity scale. In this case, the

turbulent Froude number is of order unity, assuming isotropy (u′ = w′). We call this

state “inertial-buoyancy balance”.

At inertial-buoyancy balance, the decay time (3/2) Lh/u
′ is approximately equal to

the buoyancy time scale N−1. In this case (3.17) is simply written Jb ≈
[

3
4
± 1

4

]

ξN .

Thus, (3.17) is only especially useful away from inertial-buoyancy balance, where

turbulence does not feel buoyancy effects and must therefore be growing as it does in

laboratory experiments. That is why (3.17) relates specifically to growing turbulence,

although it is valid for any isotropic turbulence (if the turbulence is still isotropic at

inertial-buoyancy balance, then Frt ≈ 1 and to ≈ N−1).

Turbulent Richardson Number—Mixing Efficiency

The turbulent Richardson number is also related to Frt. It is defined as

Rit =
N2L2

T

u′2
= Fr−2

t (3.18)

which could be written

Rit =
N2L2

T /2

u′2/2
≈

3 ξ

TKE
(3.19)

using the approximation ξ ≈ N2L2
T /2, valid if N is evaluated over the re-ordered den-

sity profile within an overturn. A test in chapter 2 and Crawford (1986) showed that

N2L2
T /2 may over-estimate ξ by a factor of 2 to 3 when N is over scales larger than

the overturns6. However, even in the worst case scenario of using layer averages for

N2, the approximation (3.19) holds within a factor of two. The turbulent Richardson

number can be interpreted as the ratio of the APEF to the TKE in one dimension.

Using the ξ/TKE ratio, buoyancy flux for model two can also be written

Jb =
[

3

4
±

1

4

]

ξ

TKE
ǫ ≈

[

3

4
±

1

4

]

Rit
3

ǫ (3.20)

6If we wish to define Rit using N evaluated at a larger scale, then the factor of 3 in (3.19) should
be replaced by a factor of 6 or possibly more.
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using (3.19), assuming that the ξ approximation is valid. This is useful because it

gives the mixing efficiency directly from Γ = Jb/ǫ as

Γ ≈
[

3

4
±

1

4

]

Rit
3

(3.21)

The turbulent Richardson number Rit quantifies the relative contribution of the

energy equations (3.10) and (3.12) to the sum (3.13). This in turn affects the mixing

efficiency. This relation will be tested in chapter 4.

Relative Effects of ǫ and ξN on Jb

Since both ξN and ǫ affect Jb from (3.17) and (3.20), an expression for Jb as function

of ξN and ǫ can be written to see which of ξN or ǫ is more determinant to Jb.

Assuming that the scaling relation ǫ ≈ u′3/Lh holds, Rit is written

Rit =
N2L2

T

u′2
≈

N2L2
T

(ǫLh)2/3
≈

[

2 ξ N

ǫ

LT

Lh

]2/3

(3.22)

if ξ is well approximated by 1
2
N2L2

T . Assuming isotropy (LT ≈ Lh such that ǫ ≈

u′3/LT ), this becomes

(Rit)iso ≈

[

2 ξ N

ǫ

]2/3

(3.23)

Buoyancy flux can then be written

Jb ≈
[

3

4
±

1

4

]

2

3
ξ N

[

ǫ

2 ξ N

]1/3

≈
[

3

4
±

1

4

]

0.53 (ξ N)2/3 ǫ1/3 (3.24)

It is seen here that ξN is more determinant to Jb than is ǫ.

Relation of Rit to a Ratio of Length Scales

Assuming that ǫ ≈ u3/Lh holds and using LO ≡ (ǫN−3)1/2, the turbulent Richardson

number can be written

Rit =
N2L2

T

u′2
≈

N2L2
T

(ǫLh)2/3
≈

L2
T

L
4/3
O L

2/3
h

(3.25)
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which, in the isotropic case, reduces to

(Rit)iso ≈
[

LT

LO

]4/3

(3.26)

Thus Rit (for isotropy) is determined by the ratio of the size of the overturns to the

maximum vertical scale that overturns can evolve to in the presence of stratification

(the Ozmidov scale). The ratio LT /LO is often used to describe the degree of inertial-

buoyancy balance in isotropic turbulence (Stillinger et al., 1983; Itsweire et al., 1986).

3.3.4 Description of Model Two

Let us now describe an imaginary experiment similar to real turbulent flow created

by advecting it through a grid and advected downstream. This imaginary experiment

differs from reality in the assumption that the flow evolves with its turbulent kinetic

energy level (the Kolmogorov spectrum) remaining constant through time. Let us

assume that production of turbulence from Reynolds stresses acting against a mean

shear could provide the sustaining energy. This is simply to allow scaling of various

quantities without introducing the effect of variations of the TKE and of ǫ.

The idea of such real experiments is that downstream evolution of the turbulence

may mimic time variation of turbulence created by strong shears in the field, if tur-

bulence is not created already at inertial-buoyancy balance (as it is thought to be

from K-H instability). Turbulence is created at small overturning scales behind the

grid and grows towards inertial-buoyancy balance as it is advected downstream.

Turbulent length scale evolution and the effect of that length scale on mixing effi-

ciency and buoyancy flux will be described below. This is useful because it illustrates

how buoyancy flux and mixing efficiency vary with the growth stage, quantified by

Frt, in model two.

In this case, the TKE equation is

U
∂

∂x

3

2
u′2 = −u′w′

∂U

∂z
− Jb − ǫ (3.27)



57

with the added growth-advection of the TKE at a mean velocity7 U , and the produc-

tion term.

Overturns are created as water passes through the grid; the initial overturn scale

will be related to the grid spacing or the thickness of the bars (the ratio of spacing to

thickness was kept constant in real experiments). This scale can be made very small.

With constant dissipation of the TKE through time and length scales, the scaling

ǫ ≈ u′3/Lh suggests that turbulent velocities will be smallest at first. The turbulence

is isotropic and does not feel the effect of buoyancy because velocities are greater

than NLT . This implies that LT is much smaller than the Ozmidov scale, and that

Frt ≫ 1. Density fluctuations are proportional to the overturn size and are small at

this stage. They cannot contribute much to buoyancy flux. The mixing efficiency is

thus low.8

Initially, LT grows at the same rate regardless of the stratification, as in un-

stratified experiments9. As the overturn scale grows, so do density and velocity fluc-

tuations and buoyancy flux. The potential energy required for overturning increases

as L2
T (e.g. ξ ≈ 1

2
N2L2

T ), but the TKE only increases as L
2/3
T (e.g. k E(k) ∝ L

2/3
T ).

While overturning velocities are increasing, the overturning period (and decay time)

LT /u′ increases as L
2/3
T . Dissipation is constant despite the increasing TKE because

of the increasing decay time. This overturning time scale eventually reaches the buoy-

ancy time scale N−1, and the vertical component of the TKE equals the potential

energy. At that point, LT has reached the maximum size allowed by the energy source

in the presence of stable stratification. It has reached the Ozmidov scale LO = ǫ/N3.

7The mean advection velocity is assumed to be much greater than turbulent velocities, simplifying
the advection term as turbulent-advection can safely be neglected

8From (3.21), the mixing efficiency (using the upper bound of the factor of 2) is approximately
Rit/3; the degree of the approximation depending only on the APEF approximation 1

2
N2L2

T . At
low values of Rit the potential energy is much less than the TKE. Mixing efficiency is low because
turbulent fluctuations carry much kinetic but little potential energy. The kinetic energy is dissipated
as usual but buoyancy flux is limited by the little amount of density fluctuations carried by the
turbulent flow.

9In this description of isotropic growing turbulence, the buoyancy flux can only be about equal
to the dissipation of temperature fluctuations (which occurs at the Batchelor microscale (νκ2

T /ǫ)1/4,
which is of order 1 mm) if the rate of change of the potential energy ξ is much less than Jb. It is
unclear how the ∝ t0.3 length scale growth observed in lab experiments affects this assumption.
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Steady-state ensues.

It is expected that the ratio of LT /LO at the inertial-buoyancy balance steady-

state will be of order unity. Its exact value is important because it determines the

maximum mixing efficiency of the turbulence.10

While turbulence is growing, both velocity and density fluctuations increase ∝ L
1/3
T

and ∝ LT respectively. This leads to a cross-correlation for ρ′w′ (and therefore

buoyancy flux) increasing as ∝ L
4/3
T . Thus mixing efficiency increases proportionately

with L
4/3
T (e.g. combining (3.21) and (3.26)).

The previous description (summarized in Figure 4.1 in the next chapter) shows

how overturning grows from small scales, fast decay time and low mixing efficiency

to largest overturning scales ≈ LO, lowest decay times ≈ N−1 and maximum mixing

efficiency.

3.4 Model Three: Inertial-Buoyancy Balance

Anisotropic Case

The model just described interpreted high turbulent Froude numbers, Frt ≫ 1, as

isotropic turbulence that does not feel the effects of buoyancy. In this section, situa-

tions where turbulence is not growing, yet has Frt ≫ 1 are considered. This will lead

to the third model considered in this thesis, relating buoyancy flux to anisotropic, yet

energetic, steady-state turbulence.

The description of turbulence in model three affects assumptions made in the

formulation. For this reason, this description is discussed next.

10The determination of the value of LT /LO at inertial-buoyancy balance has been a goal for many
investigators studying grid turbulence (Stillinger et al., 1983; Itsweire et al., 1986; Rohr et al., 1984)
and of others interested in oceanic values (Dillon, 1982; Crawford, 1986) because it determines the
constant between ǫ and ξN in model one.
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3.4.1 Description of Model Three

Imagine a mixing layer driven by a locally strong shear, say by an internal tide, but

only over a layer of thickness smaller than LO, outside which the shear falls off. The

vertical overturning scale grows to the mixing layer thickness and remains there in a

steady state. Although in a steady state, the vertical scale of the overturns is smaller

than LO and, like the growing overturns in the lab, the overturns do not feel the effects

of buoyancy. Another case is a wind-forced layer for which the overturning scale has

out-grown the layer thickness. While mixing may slowly erode the pycnocline at the

bottom of the layer, the vertical turbulent scale is limited to the layer thickness.

In both these cases, nothing prevents the horizontal scale of the turbulent velocity

fluctuations from growing further.

It could be argued that if a layer is (close to) well-mixed, then we need only worry

about entrainment, and so an entrainment model as a function of forcing parameters

would be necessary. The overturn scale method suggested in this chapter does not

attempt to quantify mixing from the observed forcing, but rather from the intermedi-

ate result of overturning which leads to mixing. If stratification is nearly gone, then

entrainment would presumably be observed in one particular profile as some APEF

(the re-ordered density gradient would then be non-zero). In this case, the well de-

veloped TKE field will transport the potential energy to small scales and dissipate it

as described in model three.

The Ozmidov scale LO = (ǫ/N3)1/2 is interpreted as the largest still isotropic eddy

size in the presence of stable stratification (Ozmidov, 1965). A new discussion is given

next, showing that it can also be interpreted as the horizontal turbulent length-scale

derived from Kolmogorov scaling from the minimum turbulent velocity fluctuation

against a stable stratification.

The vertical component of the TKE is limited by inertial-buoyancy balance and

can be no less than the potential energy gained by a parcel of water travelling upwards

a distance LT . Assuming that this energy balance is characterized at isotropy by a

constant turbulent Froude number, (Frt)isoIB, which is expected to be of order unity,
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one can write (e.g. (3.16))

w′ ≈ (Frt)isoIB NLT (3.28)

for the vertical turbulent velocity at inertial-buoyancy balance, which is the minimum

vertical velocity allowed by buoyancy forces. The inertial-buoyancy value (Frt)isoIB

can be written at isotropy because w′ = u′; if the turbulence is not isotropic, we

cannot expect Frt = (Frt)isoIB, but we still expect (3.28) to hold for vertical turbulent

velocities at inertial-buoyancy balance.

The horizontal and vertical turbulent velocities are assumed to be related by

u′LT ≈ w′Lh (3.29)

implying some sort of continuity on turbulence, where LT and Lh are vertical and hor-

izontal overturning scales respectively (The second horizontal component is neglected

in this continuity scaling).

Combining (3.28) and (3.29), the horizontal velocity scale becomes

u′ ≈ w′Lh/LT ≈ (Frt)isoIB NLh (3.30)

regardless of isotropy.

Since, by assumption of model 3, the horizontal overturning scales are much

greater than in the vertical (Lh ≫ LT ), there is turbulent energy at those larger

scales. The Kolmogorov scaling of the turbulent energy cascade must scale with the

more energetic horizontal scales as

ǫ ≈ u′3/Lh (3.31)

such that ǫ is still conserved at all scales, if the Kolmogorov spectrum E(k) ∝ ǫ2/3k−5/3

still holds.

Using (3.30), Kolmogorov scaling reduces to ǫ ≈ (Frt)
3
isoIB(NLh)

3/Lh and the

horizontal length-scale becomes Lh ≈ (Frt)
3/2
isoIB(ǫN−3)1/2 ≈ LO.

If (Frt)isoIB is close to unity, then, even if the turbulence is not isotropic, it can

be argued that in steady-state turbulence the horizontal length-scale Lh should be of
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the order of the Ozmidov scale LO. In model three, turbulence is at inertial-buoyancy

balance (Lh ≈ LO and u′ ≈ NLh) but is allowed to be anisotropic if the vertical scale

is limited by the layer to be smaller than the horizontal scale (LT < Lh)

3.4.2 Derivation of the Decay Time

As in the second model, the buoyancy flux model equates Jb to the dissipation of the

APEF over the decay time of the TKE from ǫ.

For Lh = LT , the decay time was argued to be to ≈ 3u′2/2
u′3/LT

≈ 3
2
LT /u′. However,

inertial-buoyancy balance is now assumed, such that Lh = LO. The decay time

becomes

to ≈
u′2

u′3/Lh
≈

Lh

u′
≈ (Frt)isoIB N−1 (3.32)

using (3.30) and assuming that the TKE is 2
2
u′2 = u′2 instead of 3

2
u′2 from neglecting

the smaller vertical component. This decay time can be safely approximated as

to ≈ LO/u′ ≈ N−1 for (Frt)isoIB close to unity.

The decay time is the overturning time. In the isotropic case, the turbulent length

scale determines this time scale. In the inertial-buoyancy balance case, the relevant

horizontal length scale is set by buoyancy forces such that the decay time is the

buoyancy period.

3.4.3 Formulation of Model Three; Buoyancy Flux for

Anisotropic Inertial-Buoyancy Balanced Turbulence

The buoyancy flux Jb =
[

3
4
± 1

4

]

ξ
to

is simply

Jb ≈
[

3

4
±

1

4

]

ξ N (3.33)

This result is similar to Dillon et al.’s (1987) empirical result (see chapter 5 and

Appendix B).
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3.4.4 Interpretation of the Turbulent Froude Number:

Inertial-Buoyancy Case

In the context of energetic anisotropic turbulence at inertial buoyancy balance, a

turbulent Froude number based on horizontal scales will by definition be equal to

the inertial buoyancy value (Frh = u′/(NLh) = (Frt)isoIB). The turbulent Froude

number Frt may still vary, and is therefore not interpreted as a measure of the ratio

of inertial to buoyancy forces. It will be shown that Frt can be interpreted as a ratio

of vertical to horizontal overturning length scales: a measure of anisotropy. This will

also be related to mixing efficiency.

Turbulent Richardson Number—Mixing Efficiency

The turbulent Richardson number, defined as (3.18), can be written

Rit =
N2L2

T /2

u′2/2
≈

2 ξ

TKE
(3.34)

for the reduced TKE, using the approximation ξ ≈ N2L2
T /2.

Similarly to model two, buoyancy flux can be written

Jb =
[

3

4
±

1

4

]

ξ

TKE
ǫ ≈

[

3

4
±

1

4

]

Rit
2

ǫ (3.35)

such that the mixing efficiency is

Γ ≈
[

3

4
±

1

4

]

Rit
2

(3.36)

from Γ = Jb/ǫ, with the quality of the approximation depending only on the approx-

imation ξ = 1
2
N2L2

T . As it did for model two, Rit quantifies the relative amounts of

potential to kinetic energy, which affects mixing efficiency.

Relation of Rit to a Ratio of Length Scales

Assuming that horizontal length and velocity scales provide the Kolmogorov scaling

ǫ ≈ u′3/Lh, the turbulent Richardson number

Rit ≈
L2

T

L
4/3
O L

2/3
h

(3.37)
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becomes

(Rit)IB ≈
[

LT

LO

]2

(3.38)

for Lh = LO, instead of (3.26) obtained for the isotropic case LT = Lh. Equivalently,

we can write Frt = LO/LT .

Since mixing efficiency is Rit/2, the anisotropy factor LT /LO ≈ (Rit)
1/2
IB deter-

mines mixing efficiency. This is to be expected. An isotropic layer at inertial-buoyancy

balance has maximum mixing efficiency. If the layer gets thinner, it is still dissipating

its TKE on horizontal scales. However, at a given stratification the contribution to

buoyancy flux of the density fluctuations is limited by the vertical overturning scale.

This model is consistent with what is thought to occur in wind mixed layers. As

the mixing persists, stratification is lowered and can no longer support a buoyancy

flux when completely mixed. In this case, the mixing efficiency is very low. This

models predicts this from the low APEF in the mixing layer, limiting the energy that

can ever go to buoyancy flux.

3.5 Relating the turbulent parameters to the large

scale

The second and third models presented both have a mixing efficiency uniquely de-

termined by the turbulent Richardson number. This is subject to the condition that

the turbulence is sufficiently intense to produce a buoyancy flux (ǫ/νN2 > 15; see

Appendix A). The turbulent parameters Rit and ǫ/νN2 describe the turbulence, but

these are not easily measured. The models provide a useful framework, but yet seem

to require too much knowledge about the state of the turbulence to be very useful.

The hypothesis is put forward that the turbulent parameter Rit can be related

to the larger scale forcing as described by the gradient Richardson number Rig =

N2/(∂U/∂z)2.

Assuming that turbulent velocity fluctuations originate from overturning over a

scale LT against the large scale shear ∂U/∂z, the turbulent velocity fluctuations
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should be (geometrically) proportional to both as

u′ = a LT
∂U

∂z
(3.39)

where a is an as-yet undefined constant, then Rit is related to Rig by

Rit =
N2L2

T

u′2
=

N2L2
T

a2L2
T (∂U/∂z)2

=
1

a2
Rig (3.40)

The highest value of Rit that can sustain turbulence is at inertial-buoyancy bal-

ance, and is of order unity. The maximum gradient Richardson number which can

create shear-instabilities is of order 1/4. The constant a is thus expected to be about

1/2, and must be less than unity (turbulent velocities cannot be larger than their

source).

The turbulent velocities in the Kolmogorov spectrum scale with overturn size as

∝ L
1/3
h (see Section 3.3.4). If the shear provides a velocity proportional to LT , it must

be assumed that this is only valid for the largest energy-containing scales. Smaller

scales will have higher turbulent velocities than the ∝ LT shear-scaling, and will

follow the Kolmogorov spectrum.

If turbulent velocities come from the shear as ∝ LT (∂U/∂z), then this must scale

the largest velocities between u′ and w′ if they are anisotropic. The choice of u′ in

(3.39) is thus the appropriate choice. This relation should also hold for anisotropic

turbulence (Third model).

Equation (3.39) will be tested in a later chapter for isotropic turbulence. If it

is correct, a larger scale forcing parameter such as the gradient Richardson number

can be related to the turbulent parameter Rit, which is believed to quantify mixing

efficiency and buoyancy flux. Thus, relating Rig to Rit, measurements of Rig and ξ

would be sufficient to determine ǫ, Jb and Γ.

3.6 Summary

This chapter introduced three models to the thesis, relating overturn-scale quantities

to buoyancy flux or to the dissipation of turbulent kinetic energy. Some of the model
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predictions, as well the assumptions made to derive them, will be tested in later

chapters. The models, assumptions and predictions are summarized in Table 3.1.

Some predictions are functions of Frt or Rit which depend on turbulent velocity

fluctuations u′, which are not usually measured in the ocean. Table 3.2 summarizes

proposed methods to infer the turbulent velocities to obtain Frt or Rit.

First Model

The first model is the ‘traditional’ view of overturning and relates the dissipation of

TKE, ǫ, to the overturning length scale LT via the Ozmidov scale LO = (ǫ/N3)1/2.

The main assumptions are

• The mixing efficiency Γ is constant.

• The decay time of an overturn is approximately equal to N−1, implying a bal-

ance between inertial and buoyancy forces.

The prediction is that dissipation is related to overturning by ǫ ≈ L2
T N3, and

buoyancy flux is given by assuming a constant mixing efficiency (usually Γ ≈ 1
4
) as

Jb = Γǫ.

Since this model converges with model two and three at isotropic inertial-buoyancy

balance, it is expected to hold for mixing created at inertial-buoyancy balance. This

presumably occurs when the gradient Richardson number is slowly lowered to a critical

value and instability occurs. Overturning then has only sufficient kinetic energy to

overcome stratification and an inertial-buoyancy balance insues. If mixing is not

driven more strongly by a shear, then all phases of mixing may be at inertial-buoyancy

balance such that a constant, and maximal, mixing efficiency should result. This

should be the case for breaking internal waves in the abyss and thermocline.

Second Model

By simplifying the arguments leading to the first model, a second model relating

buoyancy flux to the dissipation of the available potential energy of the overturn over
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Model Result Assumptions Comments
1 ǫ ≈ L2

T N3 Γ = 1
4 (or constant)

Inertial-buoyancy
balance

May apply to breaking
internal waves.

2 Jb ≈
[

3
4 ± 1

4

]

2
3 ξ N Frt Isotropy (LT = Lh)

ǫ ≈ u′3/Lh or
ǫ ≈ u′3/LT

An approximation of
ǫ ≈ u′3/Lh is shown to
hold (see below).

Γ ≈
[

3
4 ± 1

4

]

Rit/3 ξ ≈ 1
2N2L2

T May be overestimate by
factor 2-3 using layer-N
rather than overturn-N .

3 Jb ≈
[

3
4 ± 1

4

]

ξ N Inertial-buoyancy
balance
ǫ ≈ u′3/Lh

u′LT ≈ w′Lh

The combination ǫ =
u′3/(LT u′/w′) is shown
to hold in average sense
in ch. 4 for grid turbu-
lence.

Γ ≈
[

3
4 ± 1

4

]

Rit/2 ξ ≈ 1
2N2L2

T May be overestimate by
factor 2-3 using layer-N
rather than overturn-N .

Table 3.1: Summary of models with predictions, assumptions and comments. Model
one describes traditional thought linking LT to LO; Model two describes growing
isotropic turbulence and should apply to strongly forced mixing layers for which
overturning scale are thought to be still growing; Model three describes steady-state
anisotropic turbulence and should apply to strongly forced mixing layers thought to
have been mixing sufficiently long such that LT approaches the layer thickess and
horizontal turbulent scale may be larger than LT .
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Result Assumptions Comments
u′ ≈ (ǫLT )1/3 Isotropy (LT = Lh)

ǫ ≈ u′3/Lh

Allows estimation of u′

in Model two to obtain
Frt, if ǫ is measured.

u′ ≈ 0.4LT (∂U/∂z)
(Rit ≈ 6.2Rig)

Allows estimation of u′

for both Models two and
three to obtain u′ from
large scale shear, and to
infer Γ from Rit rela-
tions.

Rit ≈ (Lh/LO)4/3 (LT /Lh)
2 ǫ ≈ u′3/Lh General form for Rit (re-

lated to Γ) for models
two and three as a func-
tion of length scales.

Table 3.2: Summary of methods to infer u′ and Rit from large scale shear or from
measurements of ǫ and LT (for model two).

a suitable decay time was derived as

Jb =
[

3

4
±

1

4

]

ξ

to

The decay time to was argued to be the same as for the turbulent kinetic energy. This

decay time is implicit to the Kolmogorov spectrum.

to =
TKE

ǫ

If shear is driving the turbulence and creating the turbulent velocity fluctuations,

then the turbulence decay time is proportional to (∂U/∂z)−1, if the hypothesis that

u′ = aLT ∂U/∂z holds.

This model is expected to describe isotropic growing turbulence with sufficiently

intense turbulence to generate a buoyancy flux (ǫ/νN2 > 15 to 25).

The assumptions are that

• That Kolmogorov scaling of the turbulent velocities holds: ǫ ≈ u′3/L, where L
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is the turbulent length scale (isotropic). This permits obtaining a useable form

of the decay time as to ≈ (3/2)Fr−1
t N−1 and the relation (Rit)iso ≈ (LT /LO)4/3.

• That ξ is well approximated by N2L2
T /2. This is used to obtain Γ ≈

[

3
4
± 1

4

]

Rit/3. There is an extra factor of two of uncertainty, depending on

how N2 is calculated, because the gradient within overturns is smaller than

outside the overturns.

The predictions of the model are:

• Buoyancy flux is given by: Jb ≈
[

3
4
± 1

4

]

2
3
ξ N Frt.

• Mixing efficiency is: Γ ≈
[

3
4
± 1

4

]

Rit/3 to within the extra factor of two men-

tioned above if a layer-N is used, where Rit describes the ratio of potential to

kinetic energy (Frt = Ri
−1/2
t describes the ratio of inertial to buoyancy forces)

or the degree of inertial-buoyancy balance.

This model should apply to growing isotropic mixing, especially away from

inertial-buoyancy balance. This will obviously be the case in grid-generated tur-

bulence, but I argue that it should also apply to boundary layers (surface or bottom)

at an early stage when turbulence is still growing. Periodic forcing shears such as

associated with tides could cause this. This model should also hold when it is clear

that turbulence has only recently started, away from inertial-buoyancy balance. This

could be the case in internal tide flow or when a passing soliton is known to force a re-

cent mixing layer. It is not clear how mixing evolves in these cases. If the layer starts

through K-H instability, then we could argue that Frt ≈ 1 (inertial-buoyancy balance

holds) and that the mixing should all occur at maximum mixing efficiency. However,

strong shear can presumably drive mixing to higher turbulent Froude number, forcing

overturning scales to grow. Little is known about the length scale evolution in the

ocean.
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Third Model

The third model describes energetic turbulence with vertical overturning scales limited

to a layer thinner than the buoyancy length scale LO. The turbulence becomes

anisotropic as the scales grow horizontally.

The model is similar to the second, in that buoyancy flux is given by the decay of

the potential energy of the overturns. However the decay time is approximately N−1

because of the balance of inertial and buoyancy forces.

The assumptions are that

• Kolmogorov scaling of the turbulent velocities holds using horizontal velocity

and length scales, even if anisotropic (Lh > LT ): ǫ ≈ u′3/Lh. This permits

obtaining the decay time as to ≈ N−1, the relation (Rit)IB ≈ (LT /LO)2, and

the primary prediction that LO ≈ Lh

• Continuity holds on turbulent scales: u′LT ≈ w′Lh

• ξ is well approximated by N2L2
T /2, with the same factor of two of possible error

described for the second model. This is used to obtain Γ ≈
[

3
4
± 1

4

]

Rit/2.

The predictions of the model are:

• Buoyancy flux is given by Jb ≈
[

3
4
± 1

4

]

ξ N

• Mixing efficiency is Γ ≈
[

3
4
± 1

4

]

Rit/2, to within the extra factor of two, where

Frt = Ri
−1/2
t is approximated by the ratio of the horizontal turbulent scale Lh

to vertical turbulent scale LT (Frt ≈ Lh/LT ).

• The horizontal turbulent scale Lh is approximately equal to the Ozmidov scale

LO = (ǫ/N3)1/2

This model should apply in strongly forced shear layers thinner than the Ozmidov

scale, such as boundary layers. In a steady state, the horizontal turbulent scale is

then argued to outgrow the vertical extent of the layer out to the Ozmidov scale LO.

Thus this model should be most appropriate for layers with steady-state energetic

mixing, for which the vertical overturning scale nearly equals the layer thickness.
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Isotropy Effect on Mixing Efficiency

The second and third model are contrasted by their interpretation of the turbulent

Richardson number Rit, which is proportional to mixing efficiency.

• In the second model, it was stated that Rit describes the ratio of potential to

kinetic energy or the degree of inertial-buoyancy balance.

• In the third model, Rit describes the ratio of the horizontal turbulent scale Lh

to vertical turbulent scale LT , or the degree of isotropy.

In fact, both are related. The general interpretation is that Rit describes the

ratio of potential to kinetic energy. The potential energy is limited by the buoyancy

flux, and the amount of kinetic energy present limits the dissipation ǫ. This is what

determines the mixing efficiency.

The second model assumed isotropy. If turbulence departs slightly from isotropy

(say by a factor of 2), the relation Γ ≈ Rit/3 still holds if Kolmogorov scaling using

horizontal scales is valid (ǫ ≈ u′3/Lh). The effect is that the TKE stays about the

same, but ξ ≈ N2L2
T /2 decreases proportionally to the square of the degree of isotropy

(∝ L2
T /L2

h).

Both models are then consistent; mixing efficiency is determined by the ratio

of potential to kinetic energy in both. The (Rit)iso ≈ (LT /LO)4/3 dependence of

the second model describes how variations in LT /LO affect the energy ratio when

the turbulence is isotropic and follows the Kolmogorov spectrum; The (Rit)IB ≈

(LT /LO)2 dependence of the third describes how departures from isotropy affect the

energy ratio. Both can be combined into a generalized model.

A prediction is then

• For slight departures from isotropy, the measured Rit decreases ∝ L2
T /L2

h such

that mixing efficiency is still given by approximately
[

3
4
± 1

4

]

Rit/3. Mixing

efficiency is lower, but if Rit = N2L2
T /u2 is the measured quantify there is no

extra adjustment to make for isotropy.
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• The generalized form of Rit in terms of length scales combines both the inertial-

buoyancy balance Lh/LO and isotropy LT /Lh factors as

Rit ≈ (Lh/LO)4/3 (LT /Lh)
2 (3.41)

(using ǫ ≈ u′3/Lh)

Relating Gradient Richardson Numbers to Turbulent Richardson Num-

bers

The turbulent parameter Rit, which determines the mixing efficiency in both the

second and third models, is not presently a measured quantity in the ocean. A

hypothesis is put forward that the turbulent parameter Rit can be related to the

larger scale gradient Richardson number Rig if turbulent velocities are produced from

the mean shear.

The hypothesis is

u′ = a LT
∂U

∂z

or equivalently

Rit =
N2L2

T

a2L2
T (∂U/∂z)2

=
1

a2
Rig

where a is expected to be less than unity, possibly around 1/2.

This model would allow the turbulent character of the flow to be established from

simultaneous measurements of shear with an ADCP and density profile with a CTD

profiler.

Applicability to the Ocean

The first model is actually within the domain of the other two models. If indeed the

APEF is primarily linked to buoyancy flux, and mixing efficiency is about 1/4 at the

inertial-buoyancy balance, then it follows that there will also be a relation between

dissipation of the turbulent kinetic energy and the overturning scale through Jb = Γǫ.

Even if the second model is correct, it may not be an important distinction if the

mixing efficiency in the ocean is constant. The second model will differ significantly
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from the traditional view of a LT –LO link if there is a wide range in mixing efficiency

in the ocean. This issue will be addressed in the next chapters.

Another issue to address is the value of (Frt)isoIB, the value of the turbulent

Froude number at the inertial-buoyancy balance. The second model predicts a rise

in mixing efficiency with Rit, but does not predict the value of the maximum mixing

efficiency, which is found at the inertial-buoyancy balance.

Consideration will also be given to difficulties in making these overturn-scale mea-

surements in energetic ocean flows. Intrusions of water masses along isopycnals are

likely to occur at or near intense mixing regions. These are known to cause problems

with the measurement of density using a conventional CTD profiler. The mismatch

between temperature and conductivity sensors often causes what is referred to as

spiking. Intrusions make the CTD’s task more difficult.

Another sampling problem is combining density profiles from CTD measurements

with shear profiles from an ADCP to obtain gradient Richardson numbers on a useful

scale. This will also be addressed.

A Recipe for the Use of the Models

Later chapters will show that mixing efficiency is not constant in the energetically

stirred parts of the ocean, such that we may do much better to estimate buoyancy

flux using model two or three than using model one. Model one may still apply

to the kinematical model of breaking internal waves upon superposition of waves;

this is thought to lead to sporadic K-H instability occurring at inertial-buoyancy

balance. Both models two and three should be used instead in more energetic areas

where strong shears are thought to force persistent mixing layers, not just random

instabilities. Each of these two models applies in different circumstances, such that

they do not invalidate each other. Model two should be used when the overturning

scales are thought to be growing and isotropic (unfortunately, this is difficult to

determine from standard CTD measurements alone). Such a case is presented in

chapter 7 where a layer is observed to start mixing. Model three should be used for
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layers that have been mixing for a longer period, such that overturning scales have

grown to steady-state at inertial-buoyancy balance. This is typical of wind-mixed

layers, or layers that have been mixing for a long time relative to the buoyancy period.

The vertical overturning scale should perhaps approach the layer thickness (although

this would imply that the layer becomes quickly nearly well mixed). This would be

a good indicator that steady-state has been reached and that horizontal turbulent

scales may be larger than in the vertical, causing anisotropy. If no indication of the

state of the turbulence is available, or if the turbulent Froude number cannot be

inferred, then one should use the buoyancy flux formulation of model three as a lower

bound.



Chapter 4

Grid-Generated Turbulence

In the last chapter, three turbulence models were explored. The first reflects the most

commonly held view, applicable to breaking internal waves, and the other two present

a new outlook applicable to strongly mixed layers which is argued to be a more com-

plete description of turbulence. These latter two models are based on assumptions and

other models (e.g. the Kolmogorov spectrum and its scaling of turbulent velocities)

which must be tested in addition to model predictions. Such tests are very difficult

to undertake under uncontrolled (and logistically challenging) oceanic conditions. So,

for more than a decade, laboratory experiments have been conducted to investigate

turbulence. Typically, a tank is filled with salt-stratified or unstratified water. A

flow is passed through a grid to create turbulence which decays downstream. The

parameters ρ′, (rms turbulent velocities) u′, w′, ρ′w′, N2 and ǫ are measured down-

stream. The experiments are especially useful because the buoyancy flux gρ′w′/ρ is

measured directly. A close variant of the turbulent parameter Frt is also measured.

These measurements are rare in the ocean.

These grid generated turbulence experiments are discussed here to give credence

to the assumptions made in the derivation of turbulence models two and three in

chapter 3; for example, the Kolmogorov scaling of turbulent velocities is verified

empirically in an ensemble sense. The buoyancy flux and mixing efficiency of the

grid-turbulence will only be compared to model two, because the turbulence is clearly

74
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growing and nearly-isotropic over two decades of variation in LT /LO.

The experiments will first be briefly described. Their results will then be used to

verify that (with ensemble averaging)

• The Kolmogorov scaling holds for turbulent velocity fluctuations ǫ ≈ u′3/Lh,

where Lh is a horizontal length scale, and to verify the conditions under which

it holds (averaging).

• The (quasi) continuity equation u′LT ≈ w′Lh holds on turbulent scales.

• ξ is well approximated by N2L2
t /2, such that the mixing efficiency predicted

by the isotropic growing turbulence model can be compared to lab measure-

ments. (Here Lt is a new quantity defined in this chapter, which replaces LT in

laboratory experiments for which LT is rarely measured.)

• The prediction for mixing efficiency Γ ≈
[

3
4
± 1

4

]

Rit/3 of model two is correct.

• The prediction that Γ ∝ Rit = N2L2
T /2 includes the effect of anisotropy.

• Rit is proportional to Rig

• And finally to quantify the value of Frt at the inertial-buoyancy balance

(Frt)isoIB

4.1 Description of the Experiments

In grid-turbulence experiments, growing turbulence is created at small overturning

scales by passing a flow through a grid and advecting the growing turbulence down-

stream. The idea of such experiments is that downstream evolution of the turbulence

will mimic time variation of turbulence in the field. Turbulence is created at small

overturning scales behind the grid and grows towards inertial-buoyancy balance as it

is advected downstream.
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4.1.1 Idealized Description

Figure 4.1A summarizes the discussion of model two in section 3.3.4, describing the

length scale evolution of a turbulent flow with constant rate of turbulent kinetic

energy dissipation. The current case of decaying grid-turbulence is very similar; the

only difference is that there is no mean shear to sustain the TKE level. The production

term in (3.27) is removed; as there is no energy source, the TKE must decrease and

the advection term is now positive. It feeds TKE dissipation and buoyancy flux until

turbulent motions are too weak to create any mixing. The evolution of a turbulent

flow in decaying grid-turbulence experiments is depicted by Figure 4.1B

As the energy level is decaying, then from the Kolmogorov spectrum E(k) ∝

ǫ2/3k−5/3, ǫ must decay also. Therefore, Figure 4.1B now shows a decreasing Ozmi-

dov scale LO = (ǫ/N3)1/2, the maximum vertical scale that the TKE can overturn

against buoyancy forces. During this decay, there is an increase of the Kolmogorov

scale LK = (ν3/ǫ)1/4—the length scale at which viscous forces equal inertial forces

and viscosity dissipates energy. This decreases the bandwidth of turbulent length

scales from both ends. This bandwidth, or non-dimensional dissipation, quantifies

the turbulence intensity. It is often written as LO/LK or ǫ/νN2, which are related by

[

LO

LK

]4/3

=
ǫ

νN2
(4.1)

The turbulent bandwidth, shown as the LO/LK ratio, shrinks in time in Fig-

ure 4.1B. The initial overturning length scale still grows in this case. As long as

overturns are smaller than the Ozmidov scale LO, they are not restrained by buoy-

ancy forces. As LT increases towards LO, this latter length scale decays towards LT .

At some point, the overturning length scale and Ozmidov scales reaches the inertial-

buoyancy balance value of the ratio of LT /LO. At this point, LT decays at the same

rate as LO, such that the ratio LT /LO stays constant.

Gargett et al. (1984) have shown that turbulence departs from isotropy when the

turbulent bandwidth is smaller than approximately ǫ/νN2 = 200. This corresponds

to a ratio of LO/LK = 55. When LO crosses the 55LK line indicated in Figure 4.1B,
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turbulence departs from isotropy.

Laboratory experiments reviewed here have shown that when the turbulent band-

width is very small (LO/LK from 8 to 10) turbulence can no longer sustain a buoyancy

flux. This threshold is indicated in Figure 4.1B by a line at 10LK ; Approximately

when LO crosses the 10LK line, buoyancy flux is thought to stop (Itsweire et al.,

1986).

4.1.2 Experiment Description

Figure 4.2 shows the evolution of Lt, LK and LO for experiments by Stillinger et

al. (1983), denoted SHV, and three experiments by Itsweire et al. (1986), denoted

IHV1. Note that many experiments with various stratification are shown together in

each panel (the stratification is indicated by symbols in the legend).

The panels in Figure 4.2 are similar to Figure 4.1B, showing the relevant turbulent

length-scales as a function of non-dimensionalized distance from the grid. The mean

flow velocity is U = 25 cm s−1, much greater than the highest turbulent velocity. The

TKE equation describing the flow is (3.27), excluding the production term. All other

terms in (3.27) were measured in the experiments, and they balanced to within 5%

(Itsweire et al., 1986).

There are two differences between Figure 4.2 and Figure 4.1B. The first is that

Thorpe scales LT obtained from re-ordering vertical density profiles were not mea-

sured in these experiments. The overturning length scale is instead inferred by density

measurements as

Lt = ρ′

e/
∂ρ

∂z
(4.2)

where ρ′
e is the rms density difference from the mean value at a fixed point and ∂ρ/∂z

is the mean density gradient. Note that ρ′
e includes fluctuations from internal waves

1Data from Rohr, Itsweire & Van Atta (1984) are not included here because their large and small
grid experiment are nearly identical to IHV experiments R36 and R52 respectively (Itsweire et al.,
1986). Although the experiments pre-dates the IHV work, IHV extended the tank to allow sampling
the decay for longer periods.
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Figure 4.2: Evolution maps of turbulent length-scales for SHV and IHV experiments.
Position is downstream of grid, non-dimensionalized by the grid mesh size M equal
to 1.905 cm for R23 and R52 and 3.81 cm for R36 and R37. Group of lines are, from
top to bottom, LO (thick), Lt (thin) and 7.63 LK for R36 and R37 and 9.86 LK for
R23 and R52 (dashed). Symbols were plotted only for data meeting the criterion
q < 2.2(ǫLt)

1/3 explained in the text. Experiments evolve from left to right.
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as well as turbulent fluctuations associated with overturning, so that Lt may not be

an accurate measure of overturning.

The ratio of Ozmidov to Kolmogorov scales where the measured buoyancy flux falls

to zero (as described for Figure 4.1B) has been estimated by IHV as 7.63 ± 0.45 and

9.86 ± 0.48 for small (1.905 cm) and large (3.81 cm) grid mesh size respectively. These

ratios correspond to normalized transition dissipation rates ǫ/νN2 where turbulence

cannot maintain a buoyancy flux. Using (4.1), the LO/LK ratios are converted as

ǫtr = (15 ± 1.2) νN2 for M = 1.905 cm

ǫtr = (21 ± 1.4) νN2 for M = 3.81 cm
(4.3)

Values of 7.63 LK and 9.86 LK are shown on Fig. 4.2 so that they may be related

to LO to show the possible extinction of buoyancy flux. The second difference between

Figure 4.1B and Fig. 4.2 is that the LK line is not shown, nor is the ǫ/νN2 = 200 line

for departure from isotropy (Gargett et al., 1984). Note how odd it is that different

grid sizes yield different transition dissipation rates; this is discussed in appendix A,

but the reader may wish to read a later section on internal waves in the tank before

venturing into appendix A.

4.2 The Turbulent Length Scale Lt

The overturning scale is not measured using Thorpe scales in these experiments. This

raises two questions if Lt is to be used to test our model predictions from chapter 3.

The first is how does Lt compare to LT in the absence of internal waves? The second

is how can it be confirmed that what are thought to be overturning scales are not, in

fact, internal waves? This is a recurring concern. Itsweire et al. (1986) argued that

internal wave motions observed during the late stages of decay were in fact present

near the grid and predominate further downstream when turbulent motions have been

dissipated.
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4.2.1 Relating the Turbulent Length Scale Lt to Thorpe

Scales

In a related experiment using the same facility, Itsweire (1984) showed Lt to be about

equal to LT in the absence of internal waves. His figure is reproduced as Figure 4.3.

The points on the left-hand side for N = 0.98 s−1 which have LT /Lt < 1 have

dissipation levels too low to maintain a buoyancy flux (ǫ < ǫtr). The high values of

Lt are said to be caused by internal wave motion (Itsweire, 1984). Figure 4.3 shows

that LT /Lt varies from less than 1 to more than 1.2, discounting internal waves and

low dissipation levels. Itsweire et al. (1986) interpreted this figure as LT /Lt = 1.2.

The highest values of LT /Lt could be caused by an under-estimation of Lt from

using a layer-averaged density gradient. In chapter 2, layer-averaged density gradients

were observed to over-estimate the re-ordered density gradient within the overturns.

Since Lt is inversely proportional to ∂ρ/∂z, using a layer-averaged density gradient

would under-estimate Lt if such were the case here. Density gradients in these ex-

periments are full-depth averages. Because the data are not tabled and therefore

cannot be further analysed, and because the range of variations is small, the simplest

interpretation of Figure 4.3 is to say that LT /Lt ≈ 1.

4.2.2 Internal Waves Contamination of Lt

To ensure that density fluctuations due to internal wave motions in the tank do

not make Lt an over-estimate of overturning scales, let us attempt to separate the

turbulence from the internal wave motions. In doing so, the Kolmogorov scaling of

turbulent velocities will also be verified, at least for the isotropic case.

Itsweire et al. (1986) attempt to separate the internal wave component of the

motion by noting that a buoyancy length scale LB = w′/N was related to LO by

a power law of the form LO = cLb
B, and that the slope b changed at a given point

presumably because of the internal wave contributions to LB. The failings of the

method are that it has no theoretical basis and that the power law changes from one
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Figure 4.3: Thorpe scale LT versus Lt for a grid turbulence experiment where both
were measured. N = 0.98 s−1 (◦), 0.67 s−1 (△), 0.45 s−1 (2). Figure reproduced
from Itsweire (1984) (Figure 3). Note that the horizontal scale is 2Lt, not Lt. This
is due to a different definition of Lt used by Itsweire.
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data set to another. Also, it can be shown, assuming isotropy and u′ ≈ (ǫLt)
1/3, that

LO ∝ Ri
−1/4
t LB. Since there is a large change in Rit during the growth, this may

cause the LO = cLb
B power law to have a varying slope unrelated to internal waves.

A Method To Detect Internal-Waves In Grid-Turbulence

The internal wave and turbulence separation scheme that I propose uses differences in

the expected behaviour of the ratio (3u′2)1/2/(ǫLt)
1/3 versus Lt/LO for both turbulence

and internal waves.

For the nearly isotropic turbulence in the grid-generated turbulence, Kolmogorov

scaling of turbulent velocities gives ǫ ≈ u′3/Lt. For now, let us assume isotropy

so that the TKE is q2 = 3u′2. The relation q/(ǫLt)
1/3 ≈ 31/2 is then expected for

turbulent motions at all times in the turbulence evolution (assuming LT = Lt, i.e. no

internal waves). Since the turbulence is decaying, the downstream evolution maps to

an evolving ratio of LO/Lt. The relation

q

(ǫLt)1/3
≈ 31/2 (4.4)

is expected to hold for all values of LO/Lt for turbulence without internal waves.

The small internal waves in the tank have a velocity scale q ≈ NLt when density

fluctuations ρ′
e are caused by internal waves, such that Lt = ρ′

e/(∂ρ/∂z) yields the

wave amplitude and N−1 scales like the period. In this case, turbulent velocities

should be greater than the Kolmogorov spectrum can account for in terms of ǫ. The

relation
q

(ǫLt)1/3
≈
[

Lt

LO

]2/3

(4.5)

is expected to hold for internal wave motions.

Figure 4.4 shows q/(ǫLt)
1/3 versus Lt/LO for the SHV and IHV data sets. Data

with Lt/LO ≪ 1 follow (4.4), the Kolmogorov velocity scaling expected for turbulence.

Note that a ratio of Lt/LO ≈ 1 and ǫ ≈ u′3/Lt implies a low turbulent Richardson

number, Rit, from (3.26). In turn, this means that the inertial velocity u′ is much
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greater than the buoyancy velocity NLt such that internal waves cannot exist; this

range of data in Figure 4.4 are unambiguously classified as turbulence.

Around Lt/LO = 1, data diverge and follow the scaling (4.5), expected for internal

waves. These internal wave data follow a slope close to 2/3. Data with q/(ǫLt)
1/3 ≫

31/2 have more TKE than the Kolmogorov sprectrum can account for from the level

of dissipation of TKE. The energy cannot have cascaded from larger turbulent scales.

To establish our desired criterion for distinguishing internal waves from turbulence,

data with

q/(ǫLt)
1/3 > 2.2 (4.6)

are judged by eye to better fit the internal wave scaling (4.5) than the turbulence

scaling (4.4). Many points around Lt/LO ≈ 1 which could be classified as internal

waves (because u′ ≈ NLt suitable for internal waves at Lt ≈ LO and because data at

Lt ≈ LO fall along both classifying slopes) have been left as turbulence, because they

cannot be unambiguously eliminated using this criterion.

Using the above criterion, Lt can be used interchangeably with LT for the grid

turbulence data shown because internal waves can be detected and excluded from

analysis. For example, in Figure 4.2, only data not identified as internal waves are

plotted with symbols. For nearly all experiments there are few turbulent data points

during the inertial-buoyancy balanced decay, where Lt is expected to decay in constant

proportion to LO. Thus, in the evolution of turbulence depicted in Figure 4.2, the

late decay stage contains significant internal wave energy such that Lt > LT . This is

why Lt decays slower than LO, contrary to expectations shown in Figure 4.1B.

4.3 Checking The Assumptions of the Models

The following assumptions were made to derive the second model, which describes

isotropic growing turbulence

• That Kolmogorov scaling of the turbulent velocities holds: ǫ ≈ u′3/L, where L

is the turbulent length scale (isotropic). This permits obtaining a usable form
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Figure 4.4: Internal waves detection criterion showing q/(ǫLt)
1/3 vs Lt/LO for all

data from SHV and IHV experiments. The horizontal line is q/(ǫLt)
1/3 = 31/2 which

is approximately expected for isotropic turbulence. The dashed line is q/(ǫLt)
1/3 vs

(Lt/LO)2/3, a relation expected for internal wave motions. Data with q/(ǫLt)
1/3 ≥ 2.2

(filled symbols) are identified as internal waves because they resemble the q/(ǫLt)
1/3 ∝

(Lt/LO)2/3 criterion expected for internal waves rather than q/(ǫLt)
1/3 ≈ 31/2 ex-

pected for turbulence. Experiments evolve from left to right.
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of the decay time as to ≈ (3/2)Fr−1
t N−1 and the relation (Rit)iso ≈ (LT /LO)4/3.

• That ξ is well approximated by N2L2
T /2 (Used to obtain Γ ≈

[

3
4
± 1

4

]

Rit/3).

In addition, other assumptions were necessary to derive the third model, which

describes steady-state anisotropic turbulence at inertial-buoyancy balance

• That Kolmogorov scaling of the turbulent velocities holds using horizontal scale

specifically (anisotropic): ǫ ≈ u′3/Lh. This permits obtaining the decay time

as to ≈ N−1, the relation (Rit)IB ≈ (LT /LO)2, and the primary prediction that

LO ≈ Lh.

• That continuity holds on turbulent scales: u′LT = w′Lh.

• That ξ is well approximated by N2L2
T /2 (Used to obtain Γ ≈

[

3
4
± 1

4

]

Rit/2).

These will now be discussed in turn.

4.3.1 Kolmogorov Scaling and the Continuity Assumption

The verication of the assumption of Kolmogorov scaling of turbulent velocity fluc-

tuations, i.e. ǫ ≈ u′3/Lh, presents difficulties. The horizontal turbulent scale is not

measured in the experiments. The isotropy ratio, measured from the ratio of rms ve-

locity fluctuations w′/u′, varies from 0.7 to 1. This is much less variation than could

result from the third model of turbulence where Lh ≈ LO. Therefore, the ǫ ≈ u′3/Lh

relation can only be verified empirically for “nearly isotropic” turbulence with the

current data. (Note that, contrary to my interpretation, Gargett (1988) interprets

these experiments as evolving anisotropically with Lh ≈ LO. This is discussed in

appendix B where new evidence is shown to counter her claim.)

The scaling ǫ ≈ u′3/Lt was shown to hold in Figure 4.4 for data unaffected

by internal waves. Unfortunately, I cannot show that both the assumption that

ǫ ≈ u′3/Lh and that u′LT = w′Lh hold independently because Lh is not measured.

However, combinations of these two assumptions can be verified, in particular the
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Lt/LO–Rit relation, which depends on the Kolmogorov scaling. It was shown that

Rit ≈ (L2
T L

4/3
O )/L

2/3
h in (3.25). For the isotropic case of LT = Lh, this reduces to

(Rit)iso ≈ (LT /LO)4/3. This (Rit)iso relation would be a general result for Rit if

Kolmogorov scaling is really ǫ ≈ u′3/Lt instead of ǫ ≈ u′3/Lh. If the turbulence is

slightly anisotropic, the general result Rit ≈ (L2
T L

4/3
O )/L

2/3
h should hold better than

Rit ≈ (LT /LO)4/3 if Kolmogorov scaling should be done using Lh rather than Lt. Let

us combine (3.25) with the assumption u′LT = w′Lh and verify if

Rit ≈
N2L2

t

(ǫLh)2/3
≈

L
4/3
t

L
4/3
O

[

Lt

Lh

]2/3

≈





Lt

LO

(

w′

u′

)1/2




4/3

(4.7)

holds as well or better than Rit ≈ (LT /LO)4/3.

This scaling comparison is done in Figure 4.5. The reader is reminded that ex-

periments evolved from low to high values of Rit. Data identified as internal waves

contribute to most of the error in the scalings (by definition, since that is how internal

waves were detected). The identification of internal waves in the grid-turbulence data

is thus a significant contribution.

Regressions in this and other log–log figures are performed in logarithmic space.

The confidence interval on the mean is expressed as 10a±ci = 10a ×/÷ 10ci. Regres-

sions are performed minimizing variance in the ordinate for both the slope and the

multiplicative coefficient. Regressions are also shown with the slope set to that ex-

pected from scaling arguments, letting the multiplicative coefficient be determined

by minimizing variance.

Least-squares regressions in logarithmic space with the slope undetermined yield

the predicted 4/3 slope for both cases. If the isotropy-adjusted scaling (ǫ ≈ u′3/Lh)

is wrong, the error should increase at the higher values of Lt/LO where anisotropy

is strongest (up to w′/u′ ≈ 0.7) because of the decaying turbulence. It does not

(visually, ignoring the internal wave data). Also, note that the coefficient for the

isotropy-adjusted scaling is closer to unity than the unadjusted scaling.

Both assumptions ǫ ≈ u′3/Lh and u′LT = w′Lh are very consistent with the data,

although it would be difficult to show that scaling turbulent velocities with Lh is
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Figure 4.5: Ratio of overturning to Ozmidov length scales Lt/LO versus turbulent
Richardson number Rit A: Lt/LO vs Rit. Data are coded according to experiments,
open symbols for q/(ǫLt)

1/3 < 2.2 and solid symbols for q/(ǫLt)
1/3 ≥ 2.2. The least-
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1/3 < 2.2 data in log space; the first forces

the slope, the second has the slope determined by the fit. B: Same as (A), but
a correction for anisotropy is included which is expected to make the 4/3 scaling
better. Experiments evolve from left to right.
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significantly different than using Lt for this data because of the small departure from

isotropy (i.e. (0.7)2/3 ≈ 0.8 is a small factor to detect).

4.3.2 APEF Approximation

In order to derive forms of the mixing efficiency for the models, the APEF is ap-

proximated by N2L2
T /2. In chapter 2, this was shown to be an over-estimate by a

factor of 2 to 3. The reason is that the average value of N2 over a depth span larger

than an overturn tends to be higher than N2 calculated on the re-ordered density

profile within the overturn. The laboratory estimate of ξ is not subject to this same

over-estimation. Since LT is estimated from density fluctuations as Lt = ρ′
e/(∂ρ/∂z),

the approximation of the APEF is

ξ ≈
N2L2

t

2
≈

1

2

−g

ρ

∂ρ

∂z

[

ρ′
e

∂ρ/∂z

]2

≈ −
1

2

g

ρ

(ρ′
e)

2

∂ρ/∂z
(4.8)

Thus N2L2
t /2 is inversely proportional to the density gradient. If the bulk density

gradient is higher than within overturns, the APEF will be under-estimated. This was

also shown to be true for (2.29) in Figure 2.1 using bulk averages that over-estimate

N2.

Is the Density Gradient Over-Estimated?

If the density gradient is over-estimated, then the growing turbulence model’s pre-

dicted mixing efficiency Γ = Rit/3 (within a factor of 2) could be under-estimated.

The only evidence available is the comparison of Lt to LT in Figure 4.3. As previ-

ously discussed, it shows Lt ≈ LT . In chapter 2 in a test of (2.29), it was shown

that the equality LT = ρ′21/2
/(∂ρ/∂z) holds if ∂ρ/∂z is equal to the gradient within

overturns. Since there should be a one-to-one correspondence between ρ′21/2
and the

fixed-point measurement ρ′
e, then it appears that the density gradient quoted for the

lab experiments is indeed representative of the re-ordered density profile within the

overturns, at least to within 20% or so (much better than the factor of 2 to 3 for

oceanic data in chapter 2).
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The APEF should be well approximated by ξ, and Rit/3 should correspond to

the predicted mixing efficiency of the isotropic growing turbulence model, because

the density gradient quoted for lab experiments appears to be representative of that

within overturning (using the re-ordered density profile)2.

4.3.3 Summary of Assumptions

Excluding the internal wave energy-dominated data, the assumption of Kolmogorov

velocity scaling was shown to be valid (with time-averaging performed at sample

locations along the tank). The approximation of ξ as N2L2
t /2 was also shown to be

valid, based on Itsweire’s (1984) experiment. Thus the scaling assumptions made to

derive the isotropic growing turbulence model in chapter 3 are verified to the best of

our ability using the grid turbulence data. The model can now be compared to the

grid-turbulence data.

It must be noted here that the assumptions and predictions are only tested here

using averaged data, such that redistribution terms of the TKE and temperature

variance equations can also be neglected. These results cannot be readily generalized

to individual overturns. Likewise, the turbulence found past grids may not resemble

a K-H billow in its finer details, nor can we assume that a constant turbulent Froude

number can characterise the entire evolution of a K-H billow. However, the turbu-

lence found here is argued to resemble the steadily forced mixing layers in mind for

models two and three, such that these results should be relevant to shallow sea mix-

ing (continental shelfs, estuaries, straits), but not to abyssal mixing due to breaking

internal waves unless forced by a long-lasting (relative to overturn period) shear.

2It is unclear how N2 evolves following the flow because the length of the tank is sampled
sequentially, not simultaneously.
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4.4 Mixing Efficiency as Function of Rit

The model prediction for mixing efficiency is

Γ ≈
[

3

4
±

1

4

]

Rit
3

(4.9)

Figure 4.6 shows the flux Richardson number Rf as a function of Rit (or Frt

as both coordinates are shown). The flux Richardson number is closely related to

Γ = Jb/ǫ. It is defined as the ratio of buoyancy flux to the production of TKE. In

the absence of production, it is determined as the ratio of buoyancy flux to all other

sink terms. It is written as

Rf =
Jb

ǫ + Jb
=

Γ

1 + Γ
(4.10)

The flux Richardson number is sometimes referred to as the mixing efficiency. I have

referred to Γ as the mixing efficiency instead. Note that Rf ≈ Γ at small values.

The upper limit of the prediction (4.9) is shown in Figure 4.6. The fit to data is

improved when internal wave data are removed in Figure 4.6B. It matches data at

low turbulent Richardson numbers well within a factor of 2.

The prediction of the second model for maximum mixing efficiency is only that

it must occur at the balance between inertial and buoyancy forces. The value of the

mixing efficiency or of turbulent Richardson number at the inertial-buoyancy balance

was not predicted. At first glance, Figure 4.6 suggests Rit = 0.7 (equivalent to

Frt = 1.2) and Γ = 0.23 (Ivey and Imberger, 1991) for maximum mixing efficiency at

inertial-buoyancy balance. I believe this suggestion to be incorrect, but its discussion

will wait until further evidence for the inertial-buoyancy value of Rit is presented.

4.5 Slight Departures From Isotropy

The following predictions were made about the effect of slight anisotropy on Rit and

mixing efficiency:

• The measured Rit decreases ∝ L2
T /L2

h such that mixing efficiency is still given
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1/3 ≥ 2.2. B: Only data with q/(ǫLt)
1/3 < 2.2 are shown, a criterion which

eliminates most data with high internal wave energy. Data are coded by values of
ǫ/νN2.
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approximately by
[

3
4
± 1

4

]

Rit/3. There is no extra adjustment to make on

Γ ≈
[

3
4
± 1

4

]

Rit/3 for isotropy.

• The generalized form of Rit in terms of length scales combines both the inertial-

buoyancy balance and isotropy factors as Rit ≈ (Lh/LO)4/3 (Lh/LT )2 (using

ǫ ≈ u′3/Lh)

This is an important question for ocean turbulence which can be of low intensity

(ǫ/νN2 < 200) such that turbulence may become anisotropic (Gargett et al., 1984).

The effect of turbulent intensity on isotropy is difficult to ascertain using the

laboratory experiments. This might be because of the internal waves which stand out

at low turbulent intensity, and cloud the evaluation of turbulent kinetic energy and

its dissipation3. However, the effect of isotropy on the prediction of mixing efficiency

as Rit/3 can be examined.

Figure 4.7 shows the ratio of measured mixing efficiency Γ to the upper bound of

the expected mixing efficiency Rit/3—identical to the ratio of measured to expected

buoyancy flux—versus (A) the degree of isotropy w′/u′ and (B) versus turbulent

intensity ǫ/νN2. As expected, isotropy variations of 0.7 to 1 do not affect the predic-

tion of buoyancy flux from Rit. The buoyancy flux falls short of predictions only for

ǫ/νN2 < 45 where the Rit model fails. It is possible that internal wave contamination

is related to the observed cut-off value of ǫ/νN2 (see discussion in appendix A), or

that viscosity effects do in fact reduce buoyancy flux below ǫ/νN2 ≈ 45 as suggested

by Figure 4.7B.

In other words, the degree of isotropy affects Rit where departure from isotropy is

most noticeable for ǫ/νN2 < 100 (see Figure A.1). However, the resulting Rit seems to

predict the correct buoyancy flux. Figure 4.5 shows that, perhaps counter-intuitively,

anisotropy results in Rit < (Lt/LO)4/3. It is seen by comparing the isotropy-adjusted

Rit ≈ (Lt/LO)4/3(Lt/Lh)
2/3 to the unadjusted (Rit)iso ≈ (Lt/LO)4/3 which over-

estimates the former.

3Figure A.1 described in appendix A shows that w′/u′ generally decreases for ǫ/νN2 less than a
few hundred, except for a rise due to internal waves unrelated to turbulence.
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Figure 4.7: Ratio of measured to predicted mixing efficiency versus isotropy w′/u′

and turbulent intensity ǫ/νN2. Vertical line in (B) is at ǫ/νN2 = 45. Experiments
evolve from high to low values of ǫ/νN2.
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4.6 Relating the turbulent parameters to the large

scale

The applicability of the buoyancy flux model prediction (4.9) is limited. The turbulent

parameter Rit, while easily obtained in the lab, is not easily measured in the ocean.

The mixing efficiency parameterization in terms of Rit provides a useful framework,

as well as my earlier discussion on the significance of Frt, but they may require too

much knowledge about the state of the turbulence to be very useful.

In the previous chapter, it was hypothesized that Rit is related to the larger scale

gradient Richardson number Rig if turbulent velocities are produced from the mean

shear. The mixing efficiency could thus be inferred from measurements of Rig. This

model is tested now. If Rig is a useful substitute to Rit, then the parameterization

of Γ in terms of Rit allows large scale measurements to be used to infer the state of

the turbulence and its mixing efficiency.

The hypothesis is that

u′ = a LT
∂U

∂z

or equivalently that

Rit =
N2L2

T

a2L2
T (∂U/∂z)2

=
1

a2
Rig

Figure 4.8 shows data from Rohr et al. (1988)4 and Stillinger (1981) conducted

in the same tank as the SHV and IHV experiments, but with the addition of a mean

shear flow.5

The value of Lt/LO is shown against the gradient Richardson number Rig =

N2/(∂U/∂z)2 where U is the mean velocity, now a function of depth. Turbulence

4Data from Rohr & Van Atta (1987) at three different values of Rig fit on the same line as the
Rohr et al. (1988) data.

5The data point from Tavoularis et al. (1981) should be disregarded. First, it is from an ex-
periment in air (different Prandtl number). Second, they used Rig = (g/T )(∂T/∂z)/(∂U/∂z)2.
Substituting their tabled values for Rig, ∂T/∂z and ∂U/∂z one gets T = 21. Unless these were very
cold air experiments (not noted in the paper) they wrongly used temperature in degrees Celcius
rather than Kelvin to calculate Rig. Third, the turbulence appears anisotropic. However, it should
be possible to check u′ = a LT ∂U/∂z from the original data.
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Growing turbulence Decaying

Figure 4.8: Relation of turbulent parameter Lt/LO to gradient Richardson num-
ber Rig for an grid turbulence experiment with a mean shear. Includes data from
Stillinger (1981) and Tavoularis & Corrsin (1981). Figure reproduced from Rohr et
al. (1988) (Their Figure 15). Note that (Rit)iso ≈ (Lt/LO)4/3 for isotropic turbulence.
The slope of the line is 3/4 such that Rig ∝ Rit.
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grows downstream for Rig < (Rig)cr, where (Rig)cr = 0.25. Recall that for isotropic

turbulence—as expected in the presence of a driving shear—the isotropic turbu-

lent Richardson number (Rit)iso is approximately equal to (Lt/LO)4/3, assuming

ǫ = u′3/LT (this scaling was shown to hold to better than a factor of two in Fig-

ure 4.5). In Figure 4.8 it is shown that for Rig < (Rig)cr in growing turbulence, the

gradient Richardson number is proportional to (Lt/LO)4/3, which is equal to (Rit)iso

The gradient Richardson number can therefore be related to the turbulent pa-

rameter Rit or Frt, which quantifies mixing efficiency in our model and in the grid

experiments discussed earlier. Thus, measurements of Rig, ξ and N are sufficient to

determine values of ǫ, Jb and Rf .

If models two and three were proved to be wrong, the fact that Rig is proportional

to (Lt/LO)4/3 and that Lt ≈ LT means that measurements of Rig and LT in the ocean

would yield indirect measurements of ǫ (but no indication of mixing efficiency).

The proportionality coefficient a will be discussed in the following sections.

4.6.1 Link Between the Rig–Rit Relation and Inertial-

Buoyancy Balance

The interpretation of Figure 4.8 implies a connection between the Rig–Rit relation and

the value of the turbulent Froude number at the inertial-buoyancy balance, (Frt)isoIB.

The Rig–(Rit)iso proportionality ends at (Rig)cr because gradient Richardson

numbers greater than (Rig)cr do not lead to instabilities and may not provide suffi-

cient shear to completely drive turbulence. Runs with Rig > (Rig)cr result in decaying

turbulence not unlike unsheared experiments, and the correlation between Rig and

Rit disappears. The value of Rit at Rig ≥ (Rig)cr is thus the inertial-buoyancy value:

the maximum value of Rit allowed in a turbulent flow, where the vertical kinetic

energy can just overcome buoyancy force.

The value of Rit at Rig ≥ 0.25 and the value Rit = a−2 (Rig)cr should be identical,

and represent the inertial-buoyancy balance values. They are identical within the

error bounds of Figure 4.8. Thus the proportion, a, of the velocity available to the
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overturn from the shear, LT (∂U/∂z), that is converted to turbulent velocities, u′,

determines the inertial-buoyancy value of Rit at Rig = (Rig)cr. An empirical value

for a then follows from the inertial-buoyancy value of Rit, dicussed in the next section.

4.7 Inertial-Buoyancy Balance Value of Rit

The values of Rit and Lt/LO at the inertial-buoyancy balance are of interest for three

reasons: i) To determine the proportionality constant between Rig and Rit such that

the more commonly measured Rig can determine the state of the turbulence; ii) To

determine the maximum mixing efficiency predicted by the proposed model two as

≈ Rit/3; iii) To compare oceanic measurements of LT /LO to laboratory results in

relation to inertial-buoyancy balance values.

There is scatter in the Rig ∝ (Lt/LO)4/3 relation of Figure 4.8, ranging from

(Lt/LO)4/3 = 5.6 Rig to (Lt/LO)4/3 = 10.4 Rig (These values are taken by eye from

Figure 4.8 because the data were not tabulated). The corresponding ‘critical’ tur-

bulent Richardson numbers are (Rit)cr ≈ 1.4 to 2.6. For the decaying turbulence

at inertial-buoyancy balance (Rig > 0.25) in Figure 4.8, we find Lt/LO ≈ 1.45–1.7,

corresponding to Rit ≈ 1.65 to 2.03. The range of critical values of Rit is rather large

due to observational errors, but these seem to agree that it is greater than unity.

Maximum Mixing Efficiency in Grid Experiments

Returning to Figure 4.6, the maximum mixing efficiency expected at inertial-buoyancy

balance occurs at Rit = 0.7, much lower than anticipated from the experiments with

shear described above. There is thus an inconsistency to be resolved between these

data sets. The interpretation found in the original papers is described in appendix B.

With this inconsistency, one might wonder if the description in section 4.1.1 of

the evolution of the experiment is correct about the inertial-buoyancy balance decay

with constant ratio of LT /LO. Figure 4.6 suggests that mixing efficiency reaches a

peak before the decay stage, instead of thereafter remaining constant.
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Figure 4.9 shows the downstream evolution of Thorpe scales LT and Ozmidov

scales LO in a grid-turbulence experiment without a mean shear. The experiment

evolves from right to left on the figure. Nearly a decade of inertial-buoyancy balance

decay was measured with constant LT /LO. There is again a lot of scatter, but I find

approximately LT /LO ≈ 1.5 during the decay, corresponding to (Rit)cr ≈ 1.7.

Thus the initial discussion in section 4.1.1 is consistent with other data, but not

with Figure 4.2, where all data in the late decay stage are contaminated by internal

waves. This helps to resolve the inconsistency. While it is possible that w′ρ′ correla-

tions are affected by internal waves, it is also possible that that my classification of

these data as internal waves and the mixing efficiency decrease are both symptoms of

turbulent kinetic energy extinction. If the internal waves were generated at the grid,

they would only become apparent when the initially much stronger turbulent energy

has decayed. Figure 4.10 shows the parameter space Lt/LO versus ǫ/νN2 covered

for the SHV and IHV data. The parameter space Lt/LO–ǫ/νN2 is highly correlated;

high intensity turbulence has low Rit and the reverse. It is difficult to separate the

effects of one parameter from the other on the turbulence, which could explain the

misinterpretation of decreasing mixing efficiency as related to Lt/LO, while it could

be due to low ǫ/νN2 values.

Data not identified as internal waves (q/(ǫLt)
1/3 < 2.2) in Figure 4.10 have a wide

range of ǫ/νN2, but when the turbulence has evolved to an inertial-buoyancy balance

(Lt/LO ≈ 1.4) it can barely sustain a buoyancy flux, with ǫ/νN2 in the range 15 to

25.6 As discussed in section 4.5, it is possible that viscosity effects reduce buoyancy

flux below ǫ/νN2 ≈ 45 as suggested by Figure 4.7B. This is a lower turbulent intensity

than Gargett et al. (1984) reported for departure from isotropy. Perhaps anisotropy

occurs first during the decay, followed later by a reduction in mixing efficiency also

due to the effects of viscosity.

6The exact value of ǫ/νN2 needed to sustain a buoyancy flux is discussed in appendix A. Also,
data with 10 < ǫ/νN2 < 100 fall in both categories of turbulence and internal waves, suggesting
that ǫ/νN2 is not the critical parameter to classify data as internal waves. As an additional test,
the ratio q/(ǫLt)

1/3 was plotted against ǫ/νN2 and no value of ǫ/νN2 could consistently separate
turbulence from internal waves for all experiments
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Figure 4.9: Thorpe scale LT versus Ozmidov scale LO evolution in a grid-turbulence
turbulence experiment where both were measured. N = 0.98 s−1 (◦), 0.67 s−1

(△), 0.45 s−1 (2). Experiments evolve from right to left. Figure reproduced from
Itsweire (1984) (His Figure 4).
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Figure 4.10: Turbulent parameter space Lt/LO vs ǫ/νN2 for q/(ǫLt)
1/3 ≥ 2.2 (filled

symbols) and q/(ǫLt)
1/3 < 2.2 (open symbols). The Lt/LO ∝ (ǫ/νN2)−1/2 fit (on

data with q/(ǫLt)
1/3 < 2.2) is predicted for Gargett’s (1988) theory of low vertical

Reynolds number turbulence, which is discussed in appendix B. Experiments evolve
from right to left.
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Thus, in summary, data sets from SHV and IHV cannot provide information about

the mixing efficiency during the inertial-buoyancy balanced decay because of the very

low turbulent intensity at that stage of the evolution (e.g. Figure 4.2). Other sketchy

data from Figure 4.8 from Rohr et al. (1988) and Stillinger (1981) and from Figure 4.9

reproduced from Itsweire (1984) indicate that the inertial buoyancy balance value of

Rit is in the range of 1.4 to 1.7. Taking a middle ground value of 1.55, one obtains a

maximum mixing efficiency of Γ ≈ Rit/3 ≈ 0.52 using the upper bound of (4.9). In

terms of turbulent Froude number, this becomes

(Frt)isoIB ≈ 0.8 (4.11)

The relation between velocity fluctuations and shear is thus given approximately

by

u′ ≈ 0.4 LT
∂U

∂z
(4.12)

where the factor of 0.4 comes from Rit = 1
a2 Rig using critical values to determine a

from 1
a2 ≈ 1.55/0.25 ≈ 6.2; This factor is only known approximately. Equivently, the

gradient and turbulent Richardson numbers are related approximately by

Rit ≈ 6.2 Rig (4.13)

4.8 Summary and Discussion

The main results of this chapter are that

• The Kolmogorov scaling for turbulent velocity fluctuations ǫ ≈ (u′3/Lt)(w
′/u′),

where Lt is ρ′
e/(∂ρ/∂z) and where Lt (u′/w′) is used to approximate the hori-

zontal turbulent length scale, was shown to hold (to much better than a factor

of two), at least for slight isotropy (w′/u′ varied from 0.7 to 1). Note that

turbulent velocities and length scales, buoyancy flux and TKE dissipation rates

are all time-averages at various locations behind the grid. It is not obvious how

these results can be extrapolated to individual overturns, or even to individual

profile measurements of a steadily forced mixing layer.
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• ξ is well approximated by N2L2
t /2 in the laboratory experiments.

• Mixing efficiency was well within a factor of two modelled by Rit/3, the upper

limit of the expected result for model two.

• Even though anisotropy reduces Rit, possibly as a result of viscosity at ǫ/νN2 <

200 (Gargett et al., 1984), the resulting Rit still models the mixing efficiency

well until about ǫ/νN2 < 45. This later value of mixing intensity is an upper

limit (The actual cutt-off value could be lower), as the lab data may contain

internal wave energy at this turbulent intensity. This implies that dividing the

measured APEF by a decay time would be a good estimate of buoyancy flux

for turbulent intensities as low as ǫ/νN2 ≈ 45

• Large and turbulent scales are related in the following way:

– Rit ≈ 1
a2 Rig, from a model relating turbulent velocity fluctuations to

the mean shear and overturning scale as u′ ≈ a LT (∂U/∂z), where a is a

constant.

– The constant a was shown to be related to the inertial-buoyancy balance

of Rit, which in turn determines the maximum mixing efficiency of the

model.

The relation is such that (Frt)
−2
isoIB = (Rit)cr ≈ 1

a2 (Rig)cr, where (Rit)cr

is the inertial-buoyancy value and (Rig)cr = 0.25

– The value of (Rit)cr is uncertain with current data, but seems to be ap-

proximately 1.55 (at best within a factor of two).

The corresponding turbulent Froude number at isotropic inertial-buoyancy

balance is (Frt)isoIB ≈ 0.8 This corresponds to a ≈ 0.4 using (Rig)cr =

0.25.

This corresponds to Rit ≈ 6.2 Rig

The above results tend to substantiate the major assumptions and predictions of

the second model of chapter 3 for isotropic growing turbulence, for which buoyancy
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flux is given by ξ divided by a timescale set by turbulent overturning. This is true

at least for averaged data, where redistribution of kinetic and potential energy can

also be neglected. The extrapolation to single sampling profiles of a mixing layer is

unclear.

Another implication is that model one, which assumes a constant mixing efficiency,

would over-estimate buoyancy flux by 2 orders of magnitude in the early stages of

growth in these laboratory experiments. Model one would have to be set aside if

mixing efficiency (and Frt) is found to vary likewise in the ocean (not always at

inertial-buoyancy balance), although it is likely to hold for breaking internal waves in

the ocean interior.

The determination of the inertial-buoyancy balance value of Rit is problematic.

The lab experiments are not well designed for this purpose. The initial overturn

size, mostly determined from the grid mesh size, is too small relative to the Ozmidov

scale LO = (ǫ/N3)1/2, which is fairly close to the final overturn size at the end

of growth. Turbulent intensity falls off before turbulence fully evolves to inertial-

buoyancy balance. A proper parameter range would show a knee in Figure 4.10: the

increase of Lt/LO would stop, while values of ǫ/νN2 would continue to decrease. The

flat Lt/LO range would correspond to the inertial-buoyancy balanced decay.

Future experiments should focus on the inertial-buoyancy balance to better quan-

tify (Rit)cr. The parameter is important because it determines the maximum mixing

efficiency possible. Perhaps more importantly, (Rit)cr also determines the proportion-

ality coefficient between the gradient Richardson number and the turbulent Richard-

son number.

However, these considerations assume that these results are relevant to the ocean.

Questions must be answered before this can be assumed. Does the ocean mix at a

wide range of turbulent Richardson numbers leading to a range in mixing efficiencies?

Or does the ocean mixing layers quickly evolve to steady-state isotropic turbulence at

inertial-buoyancy balance? If so, can my predicted inertial-buoyancy balance mixing
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efficiency (for isotropic turbulence) of 0.5 be reconciled with Oakey’s (1985) result7

of 0.40. These questions is will addressed in the next 2 chapters.

7Oakey(1985) obtains Γ = 0.265 assuming a factor of 2 (partial) rather than 3 (full) for isotropy.



Chapter 5

Comparison of the Mixing Models

in the Ocean

In this chapter, oceanic and fresh water turbulence data reported by Dillon (1982)

and used again by Dillon (1984) and Dillon et al. (1987) are used with the following

purposes in mind:

• To test the 3 models put forward in chapter 3 with oceanic data.

• To compare Dillon’s models to each other. Dillon et al. (1987) put forward an

empirical relation between buoyancy flux and ξ N , but never compared it to

earlier relations between the buoyancy flux and LT and between the dissipation

of turbulent kinetic energy and LT (Dillon, 1982).

• To determine the value of the turbulent Froude number Frt at isotropic inertial-

buoyancy-balance . This value is important because it determines the maximum

mixing efficiency and the constant relating Rit to Rig.

• To determine the range of Frt and Γ values for oceanic turbulence to see if model

two and three are really any different from model one in oceanic conditions.

The Dillon data set is divided in cases called A, B and C in this chapter. The reader

is referred to appendix C for a description of the cases, and of Dillon’s results. The

106
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data were obtained at Ocean Station P during the MILE experiment (Series A and B)

and at Green Peter Reservoir (Series C). All of Dillon’s data are mostly temperature-

stratified such that temperature Thorpe fluctuations T ′ will be used instead of using

density fluctuations ρ′ (see appendix C). The turbulent Froude number Frt was not

measured by Dillon, but layer-averages for ǫ, N , and LT will make it possible to extract

Frt and to calculate the buoyancy flux predicted by the models. Measurement of the

dissipation of temperature variance χθ are also available for the layers. These can be

related easily to the potential energy dissipation. The approximation that this term

equals Jb is made throughout this chapter. Buoyancy flux predictions can then be

compared to overturn-scale observations.

5.1 Calculation of N2

The APEF must be evaluated to compare model predictions for Jb from chapter 3 to

observations. Dillon first defined the APEF in his 1984 paper; it is not tabulated in

his 1982 paper along with other layer-averaged quantities. An approximation must

therefore be made using the stratification against which work is done by overturning.

However, this stratification definition may differ from the large scale stratification

used, for example, in parameterizing mixing rates in terms of Kρ. Dillon’s layer

averages are examined here to determine if his tabled values of N2 are large scale

parameterization or representative of the overturns.

In Chapter 2, it was shown that ξ was well approximated by N2L2
T /2 when N2 =

(g/ρ) ∂ρ/∂z is calculated by a least-squares fit on the re-ordered density profile of

an overturn. However, a larger-scale parameterization with N obtained over a span

containing non-overturning portions led to overestimating ξ by a factor of 2 to 2.4

for the layer, since the stratification is lower within overturns1. Dillon calculated N2

over 50 cm segments of the re-ordered profiles, and averaged together the segments

associated with overturns, sometimes enclosing 25–50 cm outside of the overturns.

1Crawford (1986) does a similar analysis and finds that ξ is overestimated by a factor of 2.8 when
bulk stratification is used.
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When the span of an individual overturn was not obvious, parameters were averaged

over a depth span of similar statistical distributions. Thus the averaging spans of

data tabled by Dillon (1982) should be somewhere in between overturn spans and a

large-scale parameterization.

In chapter 2, it was shown that if LT ≈ T ′21/2
/(∂To/∂z) then ∂To/∂z was repre-

sentative of overturns instead of larger scales (In chapter 2, density fluctuations were

used instead of temperature). Figure 5.12 tests this, using values of ∂To/∂z, LT and

T ′. There is little scatter for the two oceanic cases A and B, with an average on the

mean of ∂To/∂z = 1.85 T ′21/2
/LT . (from T ′21/2

/LT = 0.54 ∂To/∂z, since regressions

were performed minimizing variance in the ordinate) In Chapter 2 statistics on a mix-

ing patch in the St. Lawrence estuary yielded ∂To/∂z = 0.93 T ′21/2
/LT when ∂To/∂z

was evaluated over distinct overturns, and ∂To/∂z = 2.14 T ′21/2
/LT when ∂To/∂z was

evaluated over spans enclosing many overturns. Thus the data in Series A and B seem

to have been evaluated over spans which include sharper gradients than those found

within the overturns. Series C, the fresh water case, has many points with ∂To/∂z

greatly exceeding T ′21/2
/LT . This can lead to great errors in the models put forward

in this chapter, as well as in the estimated measured buoyancy flux αgχθ/2(∂T/∂z).

Because N2 is representative of larger scales than overturns, the APEF approxima-

tion N2L2
T /2 is expected to over-estimate by a factor of 2 (from the above comparison

of T ′21/2
/LT = 0.54 ∂To/∂z). Verifying the buoyancy flux models from chapter 3 using

this approximation would result in extra scatter. The only APEF approximation using

larger scale averages that was shown to work in chapter 2 is ξ ≈ (1/2)(g/ρ)ρ′21/2
LT .

We will show in the next section that this relation does in fact lead to less scatter

compared to buoyancy flux.

2The regressions shown in Figure 5.1, as well as in all log–log figures in this chapter, are performed
in logarithmic space. The confidence interval on the mean is expressed as 10a±ci = 10a ×/÷ 10ci.
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Figure 5.1: Comparison of estimated temperature gradient within overturns T ′21/2
/LT

to measured gradient ∂To/∂z for two oceanic cases (Series A and B) and a fresh water
reservoir (Series C). The gradient ∂T/∂z is evaluated on the re-ordered profile over

overturn-containing spans; T ′21/2
/LT is an estimate of the local gradient within the

overturns and is found to be lower than ∂To/∂z. Data are classified by turbulent
intensity ǫ/νN2. Open symbols are well resolved; filled symbols are marginally re-
solved. Regression are on points with ǫ/νN2 > 200. Data are from tables in Dillon
(1982).



110

5.2 Dillon’s Relations

In this section, the models inferred from Dillon’s relations LT –LO and LT –LB (ex-

plained in appendix B) are examined more closely and discussed. Dillon compared

the LT –LO and LT –LB relations, but did not compare his later Jb = 4.8 ξ N model

to the first two. His first two models are related to the APEF and its commonly used

approximation N2L2
T /2.

The results of chapter 2 will be confirmed, showing that the density gradient within

overturns is well approximated by bulk properties as ρ′2
1/2

/LT , such that the APEF

approximation N2L2
T /2 works well by substituting that gradient into the expression

for N2. Also confirmed will be that N2L2
T /2 over-estimates ξ by a factor of two if a

bulk N2 is used.

Of Dillon’s relations, the one that best matches his data will be determined, such

that it can be related to and compared to the models from chapter 3.

5.2.1 Relationship Between ǫ and LT

The relation LT /LO = 1.17 was found to hold for oceanic series B (see appendix B,

Figure C.1) Substituting the definition of LO = (ǫ/N3)1/2 leads to

ǫ ≈ 0.7L2
T N3 (5.1)

using N2 calculated over a larger scale than that of the overturns.

This is identical to the first model from chapter 3 (apart from the coefficient): the

traditional view relating overturns to mixing.

5.2.2 Buoyancy Flux Relation to Thorpe Scale

Dillon’s relation LT /LB = 1.23, where LB = (Jb/N
3)1/2 leads to

Jb ≈ 0.65L2
T N3 (5.2)
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Comparing (5.1) to (5.2), the combined data sets have an average mixing efficiency

Γ = Jb/ǫ of order unity. This high value compared to other oceanic observations of

Γ (e.g. Oakey (1985)) will be discussed in section 5.5.

Both relations inferred from Dillon are compared in the top two panels of Fig-

ure 5.2. Comparing top and middle panels suggests that the Thorpe scale is a better

predictor of buoyancy flux than of dissipation, especially for Series A and C where the

mixing efficiency is much lower. The LO–LT relation seems to depend on a constant

mixing efficiency, as Dillon suggested (See appendix C).

5.2.3 Test of the Models

The term L2
T N3 in (5.2) could be interpreted as 2 ξ N since ξ is often approximated

as L2
T N2/2. We would now like to test which of Jb ∝ L2

T N3 or Jb ∝ ξ N results in

a better description of the data, as Jb ∝ ξ N corresponds to our model three and

Dillon et al.’s (1987) empirical result. Dillon did not table values of ξ, so that an

approximation must first be chosen. The actual coefficients in the models will be

discussed later.

Bulk stratification N2 greatly over-estimates overturn stratification for points with

(T ′21/2
/LT )/(∂T/∂z) < 0.2 in the middle panels of Figure 5.2.3 For these points,

L2
T N3 consistently over-estimates Jb (middle panels) because N appears to a higher

power then in the lower panels. This implies that the stratification local to the

overturns is a more relevant factor. The approximation of ξ in the lowest panels

of Figure 5.2 uses ξ = N2L2
T /2 with a local stratification N2 estimated as N2 =

αgT ′21/2
/LT . The approximation is ξ = (αg/2)T 21/2

LT , shown in chapter 2 to be

best for layer averaged Thorpe quantities.

Consistent with the results of chapter 2, the estimated APEF from L2
T N2/2 is

1.9 times higher than from (αg/2)T ′21/2
LT N by comparing the middle and lower

panels of Figure 5.2. To see which of the two approximations is accurate, at

3The ratio (T ′2
1/2

/LT )/(∂T/∂z) is not affected by a reduction in LT by averaging overturns

along with non-overturning regions, because T ′2
1/2

is reduced in exactly the same manner.
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APEF N vs Jb - (all data)
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Figure 5.2: Comparison of models inferred from Dillon’s results. The top two pan-
els compare (L2

T N3/2) to ǫ. The middle two compare (L2
T N3/2) to the estimated

buoyancy flux. The bottom two compare (ξ N) to estimated Jb approximating ξ as

(αg/2)T ′21/2
LT . Data are coded by the data set, by turbulent intensity (open sym-

bols have ǫ/νN2 < 200; solid symbols have ǫ/νN2 > 200) and circled data have

(T ′21/2
/LT )/(∂T/∂z) < 0.2. The left-hand side panels include all data and the right-

hand side ones include only data with ǫ/νN2 > 200.
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least in an average sense, we compare it to Dillon et al.’s (1987) calculation of a

mean (αgχθ/2∂T/∂z)/(ξ N) ratio, using the definition form of the APEF. Here I

am assuming that buoyancy flux equals the dissipation of potential energy Jb =

(αg/2)χθ/(∂T/∂z) (e.g. Equation (3.10) assuming that the time-derivative is zero);

Dillon et al. (1987) did not require this assumption, comparing ξN to the dissipa-

tion of potential energy without assumptions about Jb. Dillon et al. (1987) found

Jb/(ξ N) = 4.8 (replacing the dissipation of potential energy by simply Jb in the

notation, whereas a similar calculation in linear space yields Jb/ (αg/2)T ′21/2
LT N

= 4.38. This indicates that (αg/2)T ′21/2
LT is a good approximation of ξ, and that

N2L2
T /2 is an over-estimate by a factor of two, as predicted from Figure 5.1.

Comparing the middle and lower panels of Figure 5.2 tests which of Jb ∝ L2
T N3 or

Jb ∝ ξ N results in the better fit. Note that even in the ξ N panel, there is a slight bias

toward over-estimating Jb for data with ǫ/νN2 < 200, although this is mostly true in

Series C, the fresh water case. Those data have been removed from the least squares

fit regression in the right-hand panels. Since data with (T ′21/2
/Lt)/(∂T/∂z) < 0.2

yield a better fit in the lower panels of Figure 5.2 than in the middle panels, and that

the fit for all data appears (judged by eye only, as the statistics only yield confidence

errors on the mean, not information on the variance explained by the regression) to be

generally better in the lower panels, we conclude that using a better approximation

of ξ appears to result in a better fit to Jb using a decay time of N−1 for the APEF.

Dillon et al.’s (1987) last relation for buoyancy flux from the APEF, as Jb = 4.8 ξ N

is then his best fitting for buoyancy flux. The LT –LO relation is incidental. It requires

that the mixing efficiency is constant, which is not a general result (see Appendix C

and Figure 5.4 for details).
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5.3 Comparison of Models Two and Three to Dil-

lon’s Data

Dillon’s best-fitting relation to his data is Jb = 4.8 ξ N (assuming that the buoy-

ancy flux equals the potential energy dissipation). Except for the coefficient, this

is my third model, describing turbulence at inertial-buoyancy where the horizontal

turbulent length scale has evolved to the Ozmidov (inertial-buoyancy) length scale

LO.

Let us now compare Dillon’s data to both my second and third models. The aim

is to see if one is preferable to the other for Dillon’s data.

As just discussed, the third model is written as

Jb =
[

3

4
±

1

4

]

ξ N =
[

3

4
±

1

4

]

αg

2
T ′21/2

LT N (5.3)

The discrepancy between the model’s coefficient and that of Dillon et al.’s (1987)

result of Jb = 4.8 ξ N will be discussed later.

5.3.1 Model Two Re-derived

To compare data with model two, it must be written in a form which minimizes

approximations. Recall that the second model describes growing isotropic turbulence.

It is written as

Jb =
[

3

4
±

1

4

]

2

3
ξ N Frt (5.4)

Unfortunately, the turbulent Froude number is not (usually) a measured quantity

in the ocean, nor was it in Dillon’s data. Since ǫ was measured and ξ can be ap-

proximated, a form such as (3.23) could be used to infer Frt and yield (3.24) as the

second model’s buoyancy flux. However, the derivation of (3.23) assumed that ξ was

well approximated by N2L2
T /2 which has be shown not to be true for this data set.

A buoyancy flux prediction for the second model is now derived using approxi-

mations that best employ the data available. Using the scaling ǫ ≈ u3/LT which
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has been shown to hold quite well for grid-turbulence (this model assumes isotropy,

LT = Lh), the tubulent Froude number can be written

Frt =
u′

NLT

=
ǫ1/3

NL
2/3
T

(5.5)

such that the APEF approximation N2L2
T /2 usually used is avoided. Combining (5.4)

and (5.5), and using the better APEF approximation ξ = (αg/2)T ′21/2
LT , we obtain

an expression for the buoyancy flux of the second model as4

Jb =
[

3

4
±

1

4

]

αg

3
T ′21/2

L
1/3
T ǫ1/3 (5.6)

5.3.2 Comparisons of the Models

The grid-turbulence experiments agreed with the upper bound of the second model

in chapter 4. In that case, the turbulence was obviously growing because it is created

at small scales by a grid. In the ocean, the state of the turbulence is unknown and

either the isotropic growing turbulence model, or the steady-state inertial-buoyancy

balance model could hold.

The upper bound of the buoyancy flux predictions (5.3) and (5.6) are compared

to the measured potential energy dissipation in Figure 5.3. Differences are subtle,

especially if only high turbulent intensity data are considered (see right hand panels).

It would be difficult to convince anyone to use one model rather than the other with

the slight gains that would be afforded. It is possible that the dynamics of the mixing

layers is sometimes appropriate to the second model (growing turbulence) and some

other times appropriate to the third (steady-state). Data from case C appear to have

less scatter in the the second model (Jb ∝ ξ N Frt). The next section investigates

model differences further.

4The N cancels out by combining (5.4) and (5.5) to obtain (5.6), but in fact it never enters
the equation when it is considered using the decay time. Starting with Jb =

[

3

4
± 1

4

]

ξ t−1
o , where

to = (3u′2/2)/ǫ, the same substitution used in (5.5) gives t−1
o = (2/3)L

2/3

T ǫ−1/3. Buoyancy flux
is then given by (5.6) without ever using N . This means that (5.6) is not sensitive to large scale

parameterisation of N2 = αg(∂T/∂z) 6= αg(T ′2
1/2

/LT ).
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(2/3) APEF N Frt vs Jb - (all data)
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Figure 5.3: Comparison of two derivations of the buoyancy flux models from Chap-

ter 3. The top two panels compare (ξ N) to Jb approximating ξ as (αg/2)T ′21/2
LT

(and Jb is approximated by the dissipation of potential energy in all panels). The bot-
tom panels compare ((2/3)ξNFrt) to Jb, where (2/3)ξNFrt is best approximated by

(αg/3)T ′21/2
L

1/3
T ǫ1/3 for Dillon’s tabled data. Data are coded by the data set, by tur-

bulent intensity (open symbols have ǫ/νN2 < 200; solid symbols have ǫ/νN2 > 200)

and circled data have (T ′21/2
/LT )/(∂T/∂z) < 0.2. The left-hand side panels include

all data and the right-hand side ones include only data with ǫ/νN2 > 200.
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5.4 Comparison of Mixing Efficiencies

The main difference in the predictions between the isotropic growing turbulence model

(5.4) and the anisotropic fully developed turbulence model (5.3) is that the first is

dependent on Frt and the other is not; this translates to one being dependent on ǫ

in (5.6) and the other not in (5.3). The models predict similar buoyancy fluxes only

where physics converges: at inertial-buoyancy balance and at isotropy. Both of these

parameters determine the ratio L2
T /(L

4/3
O L

2/3
h ) which quantifies the mixing efficiency

for both models. Comparison of the mixing efficiencies predicted by the two models

with the measured mixing efficiency should highlight any differences between models.5

Model 2; Isotropic Case

For the isotropic model, the predicted mixing efficiency is written as

Γ =
[

3

4
±

1

4

]

αg

3
T ′21/2

L
1/3
T ǫ−2/3 (5.7)

using Γ = Jb/ǫ and (5.6).

Model 3; Steady-State Case

For the steady-state inertial-buoyancy balance model, the predicted mixing efficiency

is

Γ =
[

3

4
±

1

4

]

αg

2
T ′21/2

LT N ǫ−1 (5.8)

using (5.3).

5If the LO = (ǫ/N3)1/2 parameterisation were done using N local to overturns, two relations
for mixing efficiency could easily be compared: Γ = (LT /LO)4/3/3 for the isotropic case and Γ =
(LT /LO)2/2 for the non-isotropic case. Unfortunately, a correction must be made because ∂T/∂z 6=

T ′2
1/2

/LT . The analysis becomes complicated and, as it turns out, is not conclusive. It is therefore
not included here.
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5.4.1 Predicted Mixing Efficiency Comparison

In Figure 5.4, the model predictions are compared to the measured mixing efficiency.

The regressions have large confidence intervals on the slopes, and so were also per-

formed by least squares on the abscissae as well as on the usual ordinates. The

geometric mean of the two slopes yields the ‘geometric mean of the function regres-

sion of the ordinate on the abscissa’, also called the GM regression (Ricker, 1973). It

represents a better estimate of the slope if errors exist in both the abscise and the

ordinate.

The predicted and measured mixing efficiency have a GM regression power law

very close to unity for the combined series A and B using the third model (Figure 5.4D,

highlighted). Using this criterion, the steady-state model three is a better predictor

for those data. Forcing a power law of unity, the best fit is

Γmodel 3 = (0.28×/÷1.21) Γmeasured (5.9)

However, series C is not well fitted by either model. The model coming closest to

a one-to-one power law is the isotropic model (Figure 5.4A, highlighted). The GM

regression is a power law of 1.2. Forcing a power law of unity, the best fit for series C

is

Γmodel 2 = (0.31×/÷1.27) Γmeasured (5.10)

In conclusion, Series A and B are quite different from Series C. Oceanic series

A and B are found to marginally match predictions for the buoyancy flux model

derived from the APEF dissipated in a time scale N−1, at least within a multiplicative

constant. Fresh water series C data have more scatter, and could be marginally

associated with the isotropic turbulence model of growing turbulence.

In both cases, the predicted mixing efficiency is 3 times lower than the measured

mixing efficiency. This is discussed next.
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Figure 5.4: Mixing Efficiency compared to Models. A- Second model mixing efficiency
prediction versus measure mixing efficiency for series C. GM regression has Γmodel ∝
Γ1.2; B- Second model for series A and B. GM regression has Γmodel ∝ Γ0.7; C- Third
model for series C. GM regression has Γmodel ∝ Γ1.7; D- Third model for series A and
B. GM regression has Γmodel ∝ Γ0.97; All regression are on data with ǫ/νN2 > 200.
Thick lines are x regressed on y; thin lines are y regressed on x, solid lines have forced
slope and dashed lines have best fitting slopes. Highlighted panels A and D indicate
best fitting model.
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5.5 Possible Bias in the Dillon Data Set

If both the buoyancy flux and mixing efficiency of Dillon’s data are much higher than

predicted by either the second or third model, then either the models are wrong or

the data set is biased. While the mean mixing efficiency of the data set is close to

unity, many individual values are above 1. In fact, 24 of the 56 data points of Series

A and B have Γ > 1.

Oakey (1985) obtains Γ from simultaneous measurements of both χθ and ǫ in

275 10–15 m blocks. He finds values ranging from 0.01 to 1, with a mean of 0.265

(assuming a log-normal distribution) and one standard deviation confidence interval

as 0.066 < Γ < 0.436.6 Thus, Dillon’s mixing efficiency seems high in comparison.

Possible bias could come from errors in ∂T/∂z, ǫ or χθ. These will be considered

in turn, althought it must be emphasized that there is no proof that any of Dillon’s

data are biased; they simply do not match models shown here, and have unusually

high mixing efficiencies.

5.5.1 Possible Bias in ∂T/∂z

The stratification N2 = αg(∂T/∂z), averaged over a layer containing many overturns,

has been shown to over-estimate the re-ordered density gradient within overturns,

such that T ′21/2
/LT > ∂T/∂z. An APEF approximation insensitive to this error was

used, but a multiplication by an uncorrected N remains in the third model expression

for mixing efficiency (5.8).

A rationale for the better APEF approximation used is as follows: if overturning

statistics are averaged within a bin, but the APEF comes from one overturn within

that bin, then using T ′21/2
/LT to approximate the overturn’s density gradient makes

6Oakey uses a lower isotropy coefficient, namely Jb = (αg/3)χθ/(∂T/∂z) such that his values
should be multiplied by 1.5 to be compared with Dillon’s. Alternatively, Dillon’s values could be
adjusted to Oakey’s. We choose here to assume full isotropy for consistency with earlier derivations
which assumed it also.
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more sense than using ∂T/∂z. The same argument could be used for the the dissi-

pation of potential energy. If all the temperature fluctuation variance is dissipated

within that overturn as well, then the dissipation of potential energy ∝ (∂T/∂z)−1

should be better approximated substituting T ′21/2
/LT for ∂T/∂z.

Unfortunately, if T ′21/2
/LT is used in place of ∂T/∂z in the calculation of the

dissipation of potential energy and the buoyancy flux expression of the third model

(5.3), then the discrepancy increases further between (5.3) and the dissipation of

potential energy. This correction could not bring Dillon’s data in line with models

two and three.

5.5.2 Possible Bias in ǫ

Let us consider the possibility that dissipation of turbulent kinetic energy is under-

estimated. The buoyancy flux prediction from the third model (5.3) is not a function

of ǫ. Therefore, ǫ adjustments have no effect on fits with observations, either in terms

of buoyancy flux or mixing efficiency.

On the other hand, the buoyancy flux of the second model (5.6) is proportional

to ǫ1/3. The model’s buoyancy flux must be increased by a factor of three to fit the

observations. This requires an increase of ǫ by a factor 27, and would make mixing

efficiencies 27 times lower. This is such a large factor that it is unlikely that Dillon’s

observed mixing efficiency can be brought into line with the models by presuming

that a bias in ǫ exists.

5.5.3 Possible Bias in χθ

Changes in χθ have no bearing on predictions of buoyancy flux or mixing efficiency for

either model. Therefore, all observations of buoyancy flux and mixing efficiency would

be consistent with the models, and with Oakey’s observations of mixing efficiency, by

reducing χθ by a factor of 3.

Dillon (1982) approximates his error level in χθ as 30%. This is of course not com-

patible with my suggestion that χθ is over-estimated by a factor of 3. Nevertheless,
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for Dillon to be correct about both χθ and ǫ implies that he has measured a mean

mixing efficiency of order unity and measured maximum values of ≈ 4. These num-

bers are unusually high (e.g. Oakey (1985) obtains Γ from 0.01 to 1, with a mean of

0.265). Note that Marmorino (1991) plotted observations of LT versus (κT Cx/N)1/2,

equivalent to showing 1
2
L2

T N3 versus N2κT Cx, and obtained values of N2κT Cx from

half to a tenth of the values of Dillon. These arguments taken together suggest that

Dillon’s measurements of χθ are over-estimated by a factor of 3. If this were the case,

series A and B would then be consistent with my third model, and series C would be

marginally consistent with my second model.

5.6 Summary

In this chapter, the buoyancy flux models of chapter 3 were tested on Dillon’s data

sets consisting of two oceanic cases (Series A and B) and one fresh water reservoir

(Series C). The results are summarized as follows:

• Dillon’s (1982) verification of the Ozmidov scale LO relation to the Thorpe scale

LT holds only for series B. In that case the turbulent Froude number Frt, and

therefore the mixing efficiency, does not vary much. This is equivalent to model

one discussed in chapter 3, relating the rate of dissipation of turbulent kinetic

energy to ξN . It is not a general result because it fails in series A and C, with

surface mixed layer data. This is not a new result as Dillon (1982) noted this,

but it is included here to contrast model one with models two and three.

• Dillon’s layer averages were shown to include non-overturning parts of the water

column. The stratification listed by Dillon over-estimates stratification local to

overturns. The APEF approximation N2L2
T /2 is an over-estimate by a factor

of 2 to 3 for this data.

– As a corollary, the ratio of LT /LO is ambiguous even when used to quantify
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the inertial-buoyancy balance value; this usage was discussed for grid-

turbulence. The reason is that the value of LO = (ǫ/N3)1/2 obtained

depends on how N2 is evaluated. In this case, N2 is a layer-average (see

section 5.1). For the lab experiments, it measured the stratification that

overturns worked against. This makes comparisons difficult.

• Dillon et al.’s (1987) empirical relation Jb = 4.8ξ N better fits his data than

earlier models ǫ ∝ L2
T N3 and Jb ∝ L2

T N3. In the second case, it is because

N2L2
T /2 only approximates ξ. Dillon et al.’s (1987) empirical relation is consis-

tent with the third model, except for a much higher coefficient used by Dillon

et al. (1987).

• Dillon’s series A and B are consistent with the third model, which assumes

inertial-buoyancy balance. The Ozmidov scale LO is the horizontal turbulent

length scale Lh, generally greater than the Thorpe scale LT representing the

vertical turbulent length scale. The buoyancy flux is related to the decay of the

APEF over a time scale N−1.

• Dillon’s fresh water series C is somewhat consistent with the second model.

It describes growing isotropic turbulence. The buoyancy flux is related to the

decay of the APEF over a time scale (3/2)L
−2/3
T ǫ1/3.

• While both models are consistent with different parts of the data, the predicted

buoyancy flux for both models is a factor of 3 smaller than the observations. The

mean mixing efficiency is of order unity, much higher than is normally observed.

It is suggested here that his values of χθ are too high by a factor of 3. It is

suggested that Dillon et al.’s (1987) relation not be used until this possibility

is clarified because it is based on this likely over-estimate. The decay time of

models two and three cannot be increased by a factor of three to accommodate

Dillon’s data because it is set equal to the decay time of the turbulent kinetic

energy, and there is no physical basis for such an increase. Also, the decay time

used in model two matches grid-turbulence results.
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• Figure 5.4 shows that measured mixing efficiency (even if 3 times too high)

varies by 2 orders of magnitude over the 3 series. This suggests that the first

model LT ≈ LO should generally not be used for oceanic turbulence in strongly

forced cases.

The great range of mixing efficiencies found from Dillon’s data can be mostly

explained not by a lognormal distribution and some form of intermittency, but

rather by the effect of Frt on the turbulence. It would be very interesting to

see if Oakey’s (1985) observed variations could also be explained by this model.

– With over 2 decades of variations of mixing efficiency observed in Fig-

ure 5.4, the turbulent Froude number varies by one decade. The difference

between the buoyancy fluxes of the second and third models is then a factor

of 10 (see Figure 5.3, series C for models two and three).

• The maximum turbulent Froude number (at isotropic inertial-buoyancy bal-

ance) cannot be easily extracted from Dillon’s data. Buoyancy flux estimates

are possibly too high by a factor of 3, and model predictions have a lot of

scatter versus observations. The maximum mixing efficiency could be greater

than 1, indeed greater than expected in chapter 4 (≈ 0.50). It is clear that

most data are not at inertial-buoyancy balance, making it more difficult to de-

termine its value, and a better proportionality coefficient between Rit and Rig

(see chapter 4).

The data presented here show that model one is not a general result and should

be discarded in strongly mixed oceanic regimes. It may still apply to internal wave

breaking through K-H instability, although no such example is clearly shown in this

thesis. Without an indication of the state of the turbulence, it is difficult to determine

which of model two or three should be used. Using the wrong one introduces errors

in the estimation of buoyancy flux, but none as great as assuming a constant mixing

efficiency of one quarter since it varies by two orders of magnitude.



Chapter 6

Emerald Basin: A Test Case

An oceanic test case for the buoyancy flux model was shown in chapter 5 using Dillon’s

tabled results (Dillon, 1982). A few unanswered questions are briefly tackled in this

chapter using data from Emerald basin made available by Hans Van Haren from the

Dawson 90014 Boundary Layer Study (Oakey, 1990).

Dillon’s data were averaged within mixing layers where both overturning scales

and dissipation were well resolved. Interpretation of the results is limited in a few

ways:

• Dillon’s averaging depth spans included non-overturning spans where stratifica-

tion is greater than within the overturns. Thus, the amount of data averaging

is uncertain. Does averaging over single overturns compare well with 10-m

averages (similar to what Dillon tabulated)?

• Finestructure and microstructure parameters were only compared by Dillon in

layers where both were resolved (for obvious reasons). Yet if measurements

of overturning are to replace microstructure measurements (in energetic cases)

it must be known how successfully they can be interpreted without a-priori

knowledge of the dissipation. Two questions address this issue:

How much of the rate of dissipation of TKE is accounted for by overturning?

How much of the overturning is accounted for by the rate of dissipation of TKE?
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This kind of ‘negative’ information, telling us how well the methods fair globally,

is very useful because it quantifies how well one quantity maps to the other.

• Are there any difficulties in identifying overturns? Dillon’s tabulated data were

already layer-averages; I have not yet shown an application where I have iden-

tified overturns and discussed difficulties.

The last point about difficulties in identifying overturns concerns mainly sampling

problems. Indeed, temperature is often used instead of density to measure overturn-

ing events. This is because measuring temperature requires only one sensor, while

the calculation of density requires the combination of temperature and conductivity

data. To get an accurate density reading, the temperature and conductivity must be

measured as close together in space and time as possible, so that the temperature

of the water in the conductivity cell is as close as possible to that measured by the

temperature sensor. Also, the frequency response of the sensors must also be closely

matched. For these reasons, density is more difficult to measure within overturn-

ing events where spatial gradients of temperature and density are enhanced. Thus

temperature is often used instead, presuming a tight T–S relation exists. But if the

T–S relation is not tight, stable temperature inversions can be falsely interpreted as

overturns. These concerns will be addressed briefly in this chapter, and in greater

details in chapter 7.

6.1 Emerald Basin Microstructure Data

The Emerald Basin experiment was conducted October 9th to 16th 1990 to study

boundary layer mixing processes on the western edge of Emerald Basin. The site was

chosen for its bottom slope of between 1 and 2% and little along-isobath variability

(Oakey, 1990). It is shown in Figure 6.1.

The rate of dissipation of turbulent kinetic energy and the temperature were

measured using the vertical profiler EPSONDE in series of consecutive profiles from

the drifting ship. An uninterrupted series of EPSONDE drops taken while drifting
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Figure 6.1: Sampling Site shown as the circle on the edge of Emerald basin. Repro-
duced from Oakey (1990)
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will be is called a sequence in this chapter. The 190 profile locations are shown in

Figure 6.2.

The dissipation data were obtained using direct measurements of vertical shear

to dissipation scales averaged over vertical bins of approximately 3.4 m using the

EPSONDE profiler. Temperature was also recorded by EPSONDE at approximately

2 cm intervals, although a version of the data with 40 cm intervals is used here.

The advantage of this data is that dissipation and temperature are measured from

the same instrument. If the instrument falls through a dissipative overturning event

then both the dissipation and the APEF should be high. If the sensors were not on the

same vehicle, many profiles would have to be averaged together to allow comparisons

between dissipation and finestructure because different profilers would not likely pass

through exactly the same mixing and finestructure conditions. Another advantage

is that dissipation is measured directly; in Dillon’s data, dissipation was obtained

indirectly from the temperature spectra using the Batchelor method.

It is unfortunate that the best data set available was not used for this chapter

as data with 2 cm resolution exists (versus 40 cm used here). Data were obtained

second-hand and this resulted in my misunderstanding of the full data set. Sooner

presentation of my results to the principal investigator, Neil Oakey, would have re-

sulted in an earlier detection of this. Data analyses were completed with the alternate

data set before I learned that a better data set existed. In particular, dissipation of

temperature variance (χθ) data are available, taken simultaneously with ǫ data used

here. I was not aware of this. Future analyses of that data could be done to infer the

dissipation of potential energy and compare it directly with the overturning models

two and three for buoyancy flux. This would yield a much better comparison than

the one presented here against ǫ only, where the two models cannot be differentiated.

The interpretation of the data set is thus not without problems. The temperature

sampling interval of 40 cm is large to sample overturns; however, the largest overturns

found are many meters in size such that they are still well resolved. Overturn detection

is theoretically limited to those bigger than the sampling interval, but in practice it
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Figure 6.2: EPSONDE Sampling Stations. In all, 190 profiles of good quality were
made. Line are bathymetry at 10 m interval, starting with 100 m at the upper left
corner to 210 m at the lower right.
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is preferable to resolve an overturn with many points. This is both to assure that the

overturn is real, and to reduce the error in evaluating APEF. Also, the temperature

least count is 0.001◦C (the instrument resolution is 0.0015◦C; data were saved with

0.001◦C least count), which is not over-sampled, such that there are few noise-related

inversions (although the temperature gradient data from EPSONDE has much greater

resolution than this). This may sound good, but it prevents the use of a statistical

method, briefly described in appendix D, to determine the temperature sensor noise

level. These two factors, instrument least count and especially sampling interval,

combine to make the noise level of the finestructure-estimated buoyancy flux very

high, especially in high stratification (this will be quantified later).

6.2 T–S Characteristics

When temperature is re-ordered to find overturns, it is assumed that temperature

inversions are not salinity-compensated. The T–S relation of the water column be-

comes a very important tool to determine the presence of salinity-stabilized inversions

and intrusions.

The water column in Emerald basin (as everywhere else on the shelf, the Gulf

of St. Lawrence and up into the estuary) is characterised by salinity monotonically

increasing with depth, and by a mid-depth temperature minimum. CTD casts made

during the cruise have a temperature minimum of 4.5◦C between 30 to 50 m depth

(not shown). EPSONDE profiles are recorded from about 8 m below the surface to

the bottom, but will only be shown here below 60 m to compare with temperature

data below the temperature minimum.

The temperature at 60 m is always below the temperature minimum such that

temperature usually increases with depth and the salinity gradient controls the den-

sity gradient. Thus, instead of worrying about unstable temperature inversions being

compensated-for by salinity, a harder assumption must be made. Since the temper-

ature gradient is by itself statically unstable, it must be assumed that an overturn
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appears as a stable temperature gradient, yet statically unstable because of an un-

measured salinity gradient.

To make this assumption, a one-to-one relation is required between temperature

and density. The relation does not need to be linear, but it must be tight, so that

temperature differences can be interpreted as density differences.

The T–S characteristics were not available from the EPSONDE profiler1 but CTD

casts were made before and after each sequence of profiles for the first half of the cruise

(until winch problems prevented CTD sampling). Figure 6.3 shows the T–S diagram

obtained from all the CTD data available from the cruise (taken over 4 days, with 2

days of overlap with the EPSONDE data). At first inspection, the T–S is straight

although it is wide. This presents a problem in the interpretation because the slope

of the main T–S line is close to isopycnal: an isopycnal line intersects with a range

of ≈ 0.15 ◦C in temperature due to the scatter of the T–S line. This means that

temperature inversions up to 0.15 ◦C observed within the scatter may be isopycnal

changes instead of diapycnal. There is thus danger that intrusions will be mistaken

as overturns. Still, no obvious deformations of the T–S line are observed, so we will

proceed, using temperature as a surrogate for density in our overturn detection.

6.3 Temperature Noise Level

The APEF is calculated by re-ordering the temperature profile obtained from EP-

SONDE (density was not measured). However, some of the temperature inversions

may be created by noise. In order to discard these overturns from the comparison,

and also to determine the noise level of the estimated buoyancy flux, the noise level

of the temperature sensor must be estimated.

A new technique for doing so is described in appendix D. Unfortunately, the

technique relies on having over-resolved temperature measurements such that noise

1Temperature and conductivity were both measured from EPSONDE, but an apparent calibration
problem gave a T –S curve in disagreement with the CTD. T –S gradients have not been explored
(Oakey, Pers. Communication).
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Figure 6.3: T–S diagram for all CTD data available from the cruise. In all 34445
points from 66 profiles are shown. Isopycnals σt = 25.5 to 28.0 are indicated.
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creates inversions, which are then separated from overturning signatures using run-

length statistics. The technique cannot be used with the current 40 cm sampling and

0.001◦C least count data.

While the same CTD used here but with a lower least count and finer vertical

sampling would probably yield a lower noise level, a conservative stance is taken and

the noise level is estimated as δT = 0.003◦C (3 times the least count). Overturns with

rms Thorpe fluctuations less than that are rejected. Further, overturns consisting of

3 points or less are also rejected.

6.4 Results

In chapter 3, buoyancy flux models were derived relating the decay of the APEF, ξ,

over a time scale of N−1 on one hand, and a decay time function of the turbulent

Froude number, Frt, on the other. The Frt-dependent decay time is shorter than

N−1 when there is much more turbulent kinetic energy than potential energy in the

turbulence (TKE ≫ 3ξ).

Since I have compared overturning measurements to ǫ instead of directly to χθ, it

is not possible to verify the buoyancy flux estimates. Therefore Jb will be estimated as

ξN , the upper bound of model three prediction (3.33), but the the lower Jb estimate

between model two and three at high Turbulent Froude number. Diagrams of ξN

versus ǫ will be shown, on which the ratio of ξN/ǫ is inferred as representing both

the mixing efficiency of model three and an indicator of Frt for model two. From

Frt = Ri
−1/2
t and (3.22), the turbulent Froude number is

Frt =

[

ǫ

2 ξ N

Lh

LT

]1/3

(6.1)

Note that this assumes ξ = N2L2
T /2 (e.g. (2.28)). This approximation did not hold

for Dillon’s tabulated data (in chapter 5) because his layer averages were shown to

overestimate N2 within overturns, but it is expected to hold here because the density

gradient is evaluated separately over the depth interval of each overturn.
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A given ξN/ǫ ratio implies two different values of Frt (or Rit) depending on the

assumption made for the unknown value of Lh in (6.1). In model two, isotropy sets

Lh = LT such that the Lh/LT ratio cancels out, leaving

(Frt)iso =

[

ǫ

2 ξ N

]1/3

(6.2)

In model three, inertial-buoyancy balance sets Lh = LO. The Lh/LT ratio becomes

LO/LT which can be written (ǫ/2ξN)1/2 (again using ξ = N2L2
T /2). Thus, if inertial-

buoyancy balance conditions of model three hold, the relation between Frt and ξN/ǫ

becomes

(Frt)IB =

[

ǫ

2 ξ N

]1/2

(6.3)

Values of ξN/ǫ correspond directly to the mixing efficiency of the third model,

Γ3 = ξN/ǫ (from Jb = ξ N and Γ = Jb/ǫ). From (6.2) and (6.3), a given value of ξN/ǫ

(or Γ3) corresponds to different values of Frt at isotropy and inertial-buoyancy balance

such that (Frt)iso = (Frt)
2/3
IB

2. Since efficiencies in both models are proportional to

Rit (or Fr−2
t ), the mixing efficiency of model two can be obtained from ξN/ǫ (or Γ3)

as

Γ2 =
2
3
ξ N (Frt)iso

ǫ
=

1

3

[

2ξ N

ǫ

]2/3

≈ 0.53

[

ξ N

ǫ

]2/3

(6.4)

by noting that Jb = (2/3)ξNFrt in model two.

The mixing efficiency of the second model can thus be obtained directly from the

mixing efficiency of the third model for given values of ξN/ǫ on plots of ξN versus ǫ.

Mixing efficiencies for both models will be presented on a single ξN versus ǫ diagram.

6.4.1 Expected Outcome

The expected outcome is a good correlation between ξN and ǫ if at isotropic inertial-

buoyancy balance (where Frt ≈ 1), and ξN ≪ ǫ in well mixed layers or growing

turbulence (where Frt ≫ 1). Since the measurements were taken to the bottom

2This discussion is identical to the general form of Rit = (L2

T /L
4/3

O L
2/3

h ) in terms of length scales
being written as either (Rit)iso = (LT /LO)4/3 or (Rit)IB = (LT /LO)2.
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where mixing is expected to be more intense, it is likely that some well-mixed layers

will be sampled and that a mix of conditions will be found. The ξN versus ǫ diagram

should then resemble the L2
T N3 versus ǫ panel in Figure 5.2.

6.4.2 Data Sub-set—Sequence 10

The finestructure data is first compared to microstructure for the sequence of EP-

SONDE drops numbers 10018 to 10026. Ship drift was slow during this sequence.

The temperature field and a qualitative comparison between TKE dissipation and ξN

for overturns are shown in Figure 6.4 where the gray scale represents ǫ and the boxes

represent overturns; the depth span of the boxes coincides with the overturn sizes,

and the half-widths are values of ξN evaluated over distinct overturns. The depth

span of an overturn is defined as the smallest group of consecutive points which may

be re-ordered without moving any other point in the profile.

While qualitative agreement is found between high levels of ǫ and ξN , there are

very few overturns in regions of high temperature gradients, especially in the 60–90 m

range. The noise level for ξN (not shown) affects how much finestructure should

be found, and will be shown to be responsible for these quiet areas (where ǫ is low

anyway). Note that I do not have temperature profiles down to the bottom coinciding

with the lower-right region of high dissipation, so that the absence of overturns is not

a failure of the models.

6.4.3 Finestructure Noise Level

The noise level for Jb = ξN is determined by the minimum resolvable ξ and the value

of N . Recall that the APEF noise level was discussed in chapter 2; it is the higher of

the two values from (2.33). In this case, temperature is translated to density using

δρ = 0.12 δt, so ∂ρo/∂z = 0.12 ∂To/∂z, where the gradient of the re-ordered profile is

calculated by centered first-difference over an interval of ± 4 data points.

Temperature, dissipation, ξN and the noise level of ξN profiles are shown in

Figure 6.5 for sequence 10018–10026. Dissipation should only be compared with the
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Figure 6.4: EPSONDE 10018 to 10026 sequence are qualitatively compared with
overturning events and isotherms. The contours show the temperature field. The
gray scale represents ǫ with white equal to 10−9 W kg−1 and black equal to 3.1 ×
10−7 W kg−1. Each box identifies an overturn: the vertical extent of the box shows
the vertical extent of the overturn and the half-width of the box represents the value
of ξN of the overturn from the scale on the upper left. Thus, a half-width of zero cm
on the page means that ξN < 10−9 W kg−1.
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estimated buoyancy flux ξN in depth intervals where dissipation is greater than the

buoyancy flux noise level. This is the least severe criterion that can be applied because

the mixing efficiency is expected to be less than unity. In a mixed layer of high Frt,

the mixing efficiency is expected to be much lower, say 0.1. In this case the buoyancy

flux would be 10 times lower and dissipation should only be compared to ξN where

the noise level is 10 times lower than ǫ.

The determination of the temperature noise level is therefore important because it

determines the fraction of the water column in which buoyancy flux should be resolved

by the finestructure. Note that since the ξN noise level increases with stratification

(See Figure 6.5) finestructure cannot resolve overturning in the thermocline above

90 m or so, where no overturns are observed in Figure 6.4.

6.4.4 Averaging in 10-m Bins

The finestructure and microstructure for sequence 10018–10026 are averaged in 10 m

bins in Figure 6.6. Values of ξN are plotted only for bins in which ξN is higher than

the noise level. Note that the averages are of ξN , using N and ξ within each overturn;

values of N are not 10-m averages in this case.

By comparing Figures 6.5 and 6.6, it is seen that most energetic overturns have

thickness scales of the order of the bin size (10 m), such that the bin-averaging ξN

does not affect their values. The averaging affects ǫ much more, removing many high

wavenumber variations.

There are 49 10-m bins for which ǫ is greater than the ξN noise level. The average

mixing efficiency Γ3 for these 49 bins, calculated as the average ratio of ξN/ǫ, is 0.69

(corresponding to Γ2 = 0.51). There are 43 bins for which ǫ times 0.69 (representing

an average buoyancy flux) is greater than the noise level of ξN , the buoyancy flux for

model three; perhaps this better represents the number of bins (43) in which values

of ξN greater than noise level are expected to be measured. However, there are only

17 10-m bins for which ξN is greater than its noise level, compared to the expected

number of 43. Thus the distribution of resolved buoyancy flux by overturning is
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Figure 6.5: Noise level for ξN in 10018–10026 sequence. The thick gray line is the
noise level for ξN . The thick black line is ǫ. Overturns are not expected to be observed
if ǫ is less than the noise level. The black rectangles span the depth of overturns and
their width represents ξN for the overturn. These quantities are on a logarithmic
scale of 10−9 to 10−6 W kg−1. The temperature profile is also plotted (thin line).
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lower than expected from TKE dissipation rate measurements; overturning (and its

modelled buoyancy flux) is found only in about 40% of the 10 m bins in which it

should be resolved.

In Figure 6.7, ξN is plotted against ǫ for both overturn values of Figure 6.5 and

averages of Figure 6.6. For Figure 6.7, overturn values for dissipation are simply

the average ǫ measured within the span of the overturn. Only overturns consisting

of more than 3 points and with rms Thorpe fluctuations greater than 0.003◦C are

shown. If the overturn does not vertically overlap with any dissipation sample point,

it is compared to the closest dissipation measurement (so it is only an average for

large overturns, greater than about 3.4 m).

While the ξN versus ǫ distributions in Figure 6.7 are slightly different for the

averaged and non-averaged cases, it is difficult to say if 10-m averaging is necessarily

better than taking overturn values, having no other estimates of buoyancy flux to

compare with (from χθ, for example). It is clear that the overturn-averages do not

yield results dramatically different from 10-m averages; this is probably due to the

fact that most energetic overturns have length scales similar to 10 m. This large size

would not be true of Dillon’s observations discussed in chapter 5.

6.4.5 Analysis on Entire Data Set

Here, the above comparison is repeated on the entire data set. In Figure 6.8, ξN

is compared to ǫ for each overturn in the data set resolved by more than 3 data

points and for which T ′21/2
> 0.003◦C. A plot showing the same result in terms of

ξ1/2N−1 vs LO is also shown (where multiplying ξ1/2N−1 by 21/2 approximates LT )

because LT –LO diagrams are often seen in the literature to compare finestructure to

dissipation.

Obviously, the comparison is not very good when all data are considered in the plot

of ξN versus ǫ. The expected result is similar to Figure 6.7, where points of maximum

ξN for all ǫ values falls along a line of constant mixing efficiency Γ = ξN/ǫ. The cloud

of data below this line is expected for well mixed layers or intense, growing turbulence
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Figure 6.7: Buoyancy flux estimate ξN versus dissipation ǫ in 10018–10026 sequence.
The dots are averages over the span of each overturn (from Figure 6.5). Only overturns
consisting of more than 3 points and with rms Thorpe fluctuations greater than
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Figure 6.8: Buoyancy flux estimate ξN versus dissipation ǫ, and ξ1/2N−1 vs LO for
depth spans of well-resolved overturns, for all data set. In A and C, all data are
plotted but are coded as: (+) shallower than 65 m; (◦) between 8.6 and 9◦C. Dots
are all other data. In B and D, only dots from A and C are plotted (deeper than 65 m,
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where high Frt turbulence has low mixing efficiency. The data with high value of ξN

and low values of ǫ are ‘anomalous’ in the models. We will use this qualifier for now

to designate them because the models cannot account for mixing efficiencies much

greater than unity.

It is found that most of these ‘anomalous’ data are selected using two criteria. The

first group are between 60 and 75 m, but have no special temperature other than they

usually fall within 4 to 7◦C. The second group are in the temperature range of 8.6 to

9◦C. These data are removed in Figure 6.8B and D. The result is much better, more

like Figure 6.7 with a triangle of values with ǫ ≫ ξN allowed (low mixing efficiency)

but not the reverse. This ‘filter’ is to say the least Ad Hoc; it is only used now as a

signature to help determine what is different about these selected data. This will be

examined later in this chapter.

6.5 Discussion

Let us now review what this data analysis has revealed about the unanswered ques-

tions enumerated at the beginning of the chapter.

6.5.1 Does Averaging Over Single Overturns Compare Well

With 10-m Averages?

The comparison of ξN and ǫ yield slightly different results in Figures 6.7. The biggest

difference observed is an apparent decrease in dissipation variance with depth (seen

mostly by comparing Figure 6.5 to Figure 6.6).

Here, we would ideally wish to compare estimates of the buoyancy flux obtained

from overturning to the true buoyancy flux within the overturn, in order to estimate

the importance of the redistribution terms of kinetic and potential energy in the

governing turbulent equations. But we do not know the true buoyancy flux, nor

even an estimate (although further work could use χθ measurements). We have a

measurement of the rate of dissipation of TKE from single profiles, for which the
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same redistribution terms usually force us to ensemble average many profiles. The

best that can thus be done is to see if estimates of buoyancy flux from single overturns

are as consistent with the dissipation of TKE averaged over those overturns, as they

are using larger scale 10-m averaging.

The averaging on 10-m bin is typical of what is usually done. For instance,

Dillon’s (1982) data are for mixing layers which may hold many overturns. A major

difference remains: the finestructure buoyancy flux models were not evaluated here

by using a layer-averaged N , but rather with an N evaluated over each overturn and

then averaged. The bias introduced in Dillon’s analysis is not present here. Here,

N is calculated by regression on the re-ordered temperature profile over the span of

each individual overturn.

It is encouraging that the results are not dramatically different than those using 10-

m bin averaging, however it must be noted that most of the more energetic overturns

are of this size anyway, such that 10-m averaging should not be expected to be

dramatically different.

Note that it is not known if the overturns are evolving K-H billows (puffs). over-

turning may be occurring in more persistent mixing layers such that initial overturning

with high ξ but little ǫ (which could be observed in K-H billows) is not expected. This

is because the shear forcing is likely to be steady in the boundary layer, as evidenced

by many subsequent profiles with overturning near the bottom.

6.5.2 How Much of the Rate of Dissipation of TKE is Ac-

counted for by Overturning?

If the mean mixing efficiency (for sequence 10018–10026) of Γ3 = 0.69 is used, then

it could be assumed that bins with ǫ greater than 0.69 times the buoyancy flux noise

level should contain resolved overturns. Only 40 percent of them do. In particular,

station 10023 has a high dissipation relative to buoyancy flux noise level for 10-m

averages, and yet has very little overturning. If the expected mean mixing efficiency

is reduced by half to 0.35, then 60 percent of the bins where overturns are expected
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to be resolved do contain overturns.

Note that the average mixing efficiency is biased because not all bins have over-

turns, and those without overturns were not included in the calculation of mixing

efficiency. Therefore, that number should not be used outside of the loose context in

which it was introduced.

It is unclear why overturns are not observed in many of the bins for which overturn-

ing is expected. An hypothesis is that mixing efficiency is very low where overturns

were not observed, such that overturning is below the noise level. This cannot be

tested without estimates of Frt or measurements of χθ. However, Figure 6.7 shows

that the highest ξN/ǫ ratio, occurring consistently at all values of ǫ, has a value

greater than unity, corresponding to a high maximum mixing efficiency in models

two and three (the higher still values of ξN/ǫ which occur only at low values of ǫ will

be discussed separately). This perplexing result could be an averaging problem, or

partly due to a changing T–S water mass line changing the conversion from temper-

ature difference to density difference3. Note that such high mixing efficiencies were

also observed in Dillon’s data set, but that I have argued that they might be due

to errors in χθ. Therefore, it seems unlikely that very low mixing efficiency occurs

adjacent to very high values.

Thus, no clear answer to this question may be given here.

6.5.3 How Much of the Overturning is Accounted for by the

Rate of Dissipation of TKE?

If overturning is observed (and models consequently predict high buoyancy flux) when

the rate of dissipation of TKE is low and cannot account for any buoyancy flux,

this would not be seen in comparisons done using only data where both ǫ was well

resolved and overturning occurred (e.g. Dillon’s analysis). The present data have

3Because the T –S line is fairly close to isopycnal, small differences could account for large changes.
Up to a 30% reduction in the temperature to density conversion results in changing from the main
T –S line to a secondary line shown in upcoming Figure 6.10
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such occurrences. In the next section, I will try to convince the reader that these are

intrusions and not overturning events; they should therefore be discounted from the

comparison with the rate of dissipation of TKE. The presence of intrusions is in fact

the major difficulty with the interpretation of this data, and possibly many data sets

with energetic mixing.

6.6 Intrusions and Water Masses

The main problem with the interpretation of the data are those ‘overturns’ with very

high ξN and very low rates of dissipation of TKE. Most of these anomalous data were

found to be either between the depths of 60 and 75 m or between the temperature of

8.6 and 9.0◦C.

The two groups of anomalously high ξN data are not spread about equally in

all the data set. Figure 6.9 shows the overturn-averaged ξN versus ǫ for each time

sequence of EPSONDE drops from the drifting ship. Note that not all sequences

suffer from these points, and those that do often have many such points (which are

spread over many profiles).

The T–S properties of the CTD data are re-examined in Figure 6.3 to identify

what is different about the data between 60 and 75 m and also about those between

8.6 and 9.0◦C. Upon close inspection, one can discern different water masses in

Figure 6.3. In Figure 6.10, two water mass families are shown which appear to be

the extremes found in the CTD data. It is possible, and likely, that these two water

masses may interleave and also mix together since both these masses were sampled

in close proximity.

CTD casts were taken between EPSONDE sequences for the first part of the

cruise (until they experienced winch problems). There are two sequences for which

CTD data is available which have anomalous ξ data characterised by 8.6–9.0◦C water.

These are stations 13 and 14, and the T–S diagrams are shown in Figure 6.11. It is

seen that sampling in stations 13 and 14 started in one water mass and finished in
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Figure 6.9: Overturn-averages of ξN vs ǫ for individual EPSONDE sequences. (+)
shallower than 65 m; (◦) between 8.6 and 9◦C; (2) all other data. Sequence number
indicated in upper left corner of each panel. Oblique line is mixing efficiency Γ2 = 0.53
or Γ3 = 1.
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Figure 6.10: Water masses found on T–S relation. The two lines represent the extreme
water masses found on the T–S relation in Figure 6.3.
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the other. The temperature at the intersection of these two water masses is in the

range of the observed high ξN (8.6–9.0◦C). Possibly, an intrusion was occurring close

to the intersection temperature of the two water masses.

The EPSONDE data characterised by depths between 60 and 75 m (‘plus’ symbols

on Figure 6.9) cannot be found on all T–S diagrams of Figure 6.11 made from CTD

casts. For example, T–S diagrams for sequences 6 and 9 are not shallow enough to

observe characteristics found in this depth range (although this is merely due to a

cut-off depth chosen for the CTD files given to me because the region of interest was

the bottom boundary layer (Van Haren, Pers. Communication)). For this reason,

we will again look to EPSONDE station 14 to explain the high ξN found in depths

between 60 and 75 m (Different points within the profiles than those found between

8.6 and 9.0◦C).

In sequence 14, there is a possibility that a mixture of both water masses in

Figure 6.10 is intruding along an isopycnal into the sampling drift track. This stable

intrusion has a different temperature for its density than would otherwise be seen.

When EPSONDE enters or leaves the intrusion, the the temperature gradient would

reverse and create an apparent overturn.

Figure 6.12 shows the drift track of sequence 14, as well as the positions of the pre-

ceeding and following CTD casts. The time evolution is also shown, with time against

the latitude position. The drift and sampling were fairly regular. Supported by this,

the temperature at a chosen isopycnal is plotted linearly between the preceeding and

following CTD cast position in the third panel of Figure 6.12. The temperature was

observed to decrease by 0.5◦C at that isopycnal during the time span of the sequence,

from 7.1 to 6.6◦C (in less than 6 hours). The ‘overturns’ with high ξN centered

between 60 and 65 m (for this sequence, generally these points are between 60 and

75 m) are only found during the first five stations of sequence 14. They are shown as

black dots in Figure 6.12. The minimum and maximum temperatures for each of the

‘overturns’ are connected and shown in the third panel. They show that the decrease

in temperature of that ‘overturn’ throughout the sequence of profiles is consistent
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Figure 6.11: T–S diagram for all EPSONDE sequences preceeded and followed by a
CTD cast. The two lines are water masses traced on Figure 6.10. Sequence number
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should be believed. In certains sequences, two end water masses are found at the start
and end, such that intrusions could be present during the sequence. These intrusions,
not observed in any way in this figure, could be seen as overturns by EPSONDE using
only temperature profiles.
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with the observed temperature decrease at an isopycnal going through the ‘overturn’.

This suggests that the ‘overturns’ are in fact temperature signatures of an intrusion

of both end water masses.

The origin of the mixed intrusion is unclear. It occurs at the same depth, yet

different temperatures, in many profiles. In particular sequence 6 has an apparent

intrusion at the same depth, but this time between 4 and 5◦C instead of around 7◦C.

Through 6 consecutive profiles, the intrusion temperature decreases by 0.6◦C. There

are no sills at a depth of 60 to 70 m close by. The closest is Emerald bank, 70 to

80 m in depth, at over 20 km away from these stations.

6.7 Summary

In this chapter, microstructure data from Emerald Basin were used as a test case of the

finestructure models for estimating buoyancy flux from overturns. The temperature

data used have low vertical resolution for overturn detection (40 cm resolution was

used here, but 2 cm resolution data exist) and so areas of high stratification were not

resolved by the method. However, overturning was often on such large vertical scales

(≈ 10 m) that even the 40 cm vertical sampling resolves them easily.

The main results were

• The buoyancy fluxes obtained from the overturn finestructure were consistent

with the dissipation measurements even if data are averaged over the vertical

extent of separate overturns (See Figure 6.5 and Figure 6.7). To my knowledge,

this is the first time that these quantities have been compared on such small

averaging spans. However, the large overturning size limits the applicability of

this result to less energetic mixing layers.

• About 40 to 60% of 10-m bins in which overturning was expected were observed

to contain overturns.

• The maximum mixing efficiency observed is fairly high (Γ3 ≈ 2). Low mixing
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efficiencies were Γ3 < 0.1 using the third model (or Γ2 < 0.04 using the second

model). Note that these mixing efficiencies come from buoyancy flux models

using the upper bound of the factor of two of their coefficient (
[

3
4
± 1

4

]

). Re-

gardless of this factor, there is a range of about 2 decades in observed mixing

efficiency (not counting bins where no overturns were observed), but the instru-

ment resolution limits this range. This implies that the data are incompatible

with model one, which assuming a constant mixing efficiency. The same was

said of Dillon’s data sets A and C.

• Temperature was used as a density tracer to identify and compute the potential

energy of the overturning events. A tight T–S relation is required for this to

work properly. In regions where ξN was much higher than ǫ, it was shown

that the sequence started in one water mass and finished in another. Persistent

apparent overturns warmed from profile to profile consistently with isopycnal

changes between the two end water masses. This strongly suggests that the

high ξN anomalies were in fact intrusions.

• This is perhaps the most important point: If dissipation data had not been

available, and only finestructure were used to estimate mixing, all data where

the T–S varied greatly would not be used because of the possibility of misin-

terpreting intrusions as overturns. It is therefore recommended that salinity

always be measured if it can affect density in a significant amount. Even if den-

sity measurements cannot resolve overturning events sufficiently to reorder the

profiles to find overturns, it is probably good enough to help identify inversions

caused by intrusions. These often have uncommonly high values of ξN .



Chapter 7

Application to the St. Lawrence

Estuary

Microstructure measurements have yet to be taken in the St. Lawrence estuary, yet

many authors have discussed the strong mixing that occurs at the head of the Lau-

rentian channel (Steven, 1974; Forrester, 1974; Ingram, 1975; Therriault and Lacroix,

1976; El-Sabh, 1979; Gagnon and El-Sabh, 1980; Ingram, 1983). It is thought that

mixing occurs predominantly at the head of the channel (Steven, 1974), and that

large shears associated with an internal tide provide the forcing (Forrester, 1974).

This internal tide appears to be generated at the slope where bathymetry shallows

from 350 m to 50 m in less than 15 km (Forrester, 1974), but the exact mechanism

is not confirmed1

In this chapter, CTD and ADCP data sampled at the head of the channel are

used in conjunction with the buoyancy flux models discussed in this thesis to estimate

mixing rates.

1While it can be argued that a critical slope at the head can reflect some tidal energy and create
the internal wave, at least one author has proposed otherwise. Blackford (1978) constructed a 2-
layer generation model without rotation whereby continuity dictates that the flow over the sill must
be greater than seaward. A Bernoulli depression over the sill accelerates the flow by generating a
pressure gradient in the surface layer. Since there is no flow in the bottom layer seaward of the sill,
the interface must tilt to compensate the pressure gradient in the top layer. The periodic tidal flow
over the sill thus creates a wave at the interface which propagates seawards.

154
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This chapter serves three purposes. First, it illustrates what is known about the

hydrodynamic conditions in the area, hopefully adding to that knowledge and iden-

tifying some weak points. This includes discussions of the internal tides, intrusions

and solitons. Second, an attempt is made to quantify mixing, to show what forces

it, and to determine its range of turbulent Froude number Frt. The Froude number

will be estimated from the larger scale gradient Richardson number Rig. No further

comparison can be made between mixing models presented in earlier chapters because

microstructure quantities (ǫ, χθ) were not measured here. Third, the overturning will

be related to the shear forcing by comparison with Gregg’s (1989) model which links

shear to dissipation levels.

7.1 CTD and ADCP Data Set

During a preliminary cruise on the Petrel V in the fall of 1987, density inversions

thought to be overturning events were measured using a conventional GuildLine CTD.

A longer, second cruise took place in late June of 1988 on the C.S.S. L.-M. Lauzier.

During the last three days of the cruise, an R&D Instruments 1200-KHz ADCP was

graciously lent to us for demonstration purposes by David Stewart of Dasco Equip-

ment Inc. The ADCP sampled velocity vectors in 1-m bins and 2-minute averages

from 3 to 32 m. The velocities are measured relative to the surface bin because the

sea floor was beyond the bottom-tracking range of the ADCP.

7.1.1 Gradient Richardson Numbers

The gradient Richardson number, Rig, is an indicator of the dynamic stability of the

water column. It has been shown to be related to the turbulent Froude number, Frt,

in a previous chapter, by

Fr−2
t = Rit ≈ 6.2 Rig (7.1)

However, gradient Richardson numbers can be evaluated at different vertical scales.

A brief outline of the methodology used for this data set follows.
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Relative horizontal velocities are measured from an ADCP using 1-m bins. Its

acoustic sampling results in the convolution of a sound train with each 1-m bin of

water column. The end effect is a 2-m thick triangular filter imposed on velocity

observations. The velocities are externally further smoothed with a (1
4
,1
2
,1
4
) vertical

moving average, and then first-differenced to obtain shear. The horizontal compo-

nents of shear are squared and added to yield the total shear squared.

Stratification was estimated using CTD profiles sampled about 10 or 15 m away

from the ADCP. These are the same profiles used to find overturning events. Density

was averaged in 1-m bins using a 2-m thick triangular moving average, designed to

mimic the implicit filtering in the acquisition of velocity data with the ADCP. These

data are further filtered with the same three point moving-average used on the ADCP

bins, and are first-differenced to yield ∂ρ/∂z and thereafter N2.

Richardson numbers are then obtained from the ratio of N2 to shear squared.

Both shear and stratification are averaged vertically on a similar scale, but shear is

also a volume average of acoustic return signals.

7.2 T–S Properties, Intrusions and Circulation

Before any CTD measurements of overturning events are discussed, it is important to

describe the T–S properties of the area. A tight T–S relation is preferred to rule out

the possibility of intrusions, since it is intended to use temperature instead of density

to find overturns (as in chapter 6).

Figure 7.1 shows T–S properties sampled at four stations located near the head

of the Laurentian channel. Station locations are shown on Figure 7.2. Each station

was sampled for many hours, often over a semidiurnal tidal cycle.

There are dramatic gradients in T–S properties along isopycnals which appear

related to the circulation. Ingram (1979) showed that tidal-residual circulation during

the Spring season is approximately 17 cm s−1 up-channel at station 21 in the top

125 m. The residual circulation is down-channel on the South side, at stations 14 and
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Figure 7.1: Temperature–Salinity Properties at the head of the Laurentian channel.
Stations indicated in upper-right corner of each panel. Station locations are shown in
Figure 7.2. Station 21 was sampled to 200 m every hour starting June 27 1988 15:01
EDT to June 28 04:58 EDT. Station 24 was also sampled to 200 m every hour, on
June 29 from 14:01 to 22:59 EDT; Winds increased from very low to 25 knots at the
end of the day. Station 14 was sampled to 50 m on July 4 from 04:50 to 14:04 EDT
in 15 knot winds. Station 11 to 50 m was sampled from July 4 14:57 to July 5 02:45
in light winds. The last 3 profiles were taken to 235 m. See text for explanation of
water mass lines.
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Figure 7.2: Study area in the Lower St. Lawrence estuary. Adapted from In-
gram (1979).
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24.

The V-shaped solid lines added to Figure 7.1 indicate the main water masses

found, except for some surface cooling at stations 21 and 24, and surface warming

at station 11 and, to a lesser extend, station 14. The deepest waters have a uniform

T–S distribution for all stations. The T–S relation above the temperature minimum

is tightest for Station 11 and 21, consistent with advection of undisturbed water into

what is assumed to be a stronger mixing region.

Ingram (1979) found that the temperature minimum increased by less than 1◦C

between May 1973 at Gaspé and July 1973 near station 21. This 3-month inter-

val corresponds to the advection time between the two locations. He used a sim-

ple advection-diffusion model of the temperature minimum to estimate mixing along

the Laurentian channel. He could explain half of the temperature change by using

Kρ∂
2T/∂z2 = 10−7◦C s−1 and Kρ = 2 × 10−5 m2 s−1. Ingram obtained these mixing

rates from internal tide modes (Forrester, 1974) and an eddy diffusivity parameteri-

zation in term of the gradient Richardson number (Jones, 1973).

Since the minimum temperature at station 24 varies by more than 1◦C, it is

noteworthy that 3 months of diffusion along the Laurentian channel is overwhelmed

within a time which could be presumed to be a few tidal cycles at most. This is

presumed to occur here because of the larger internal tides combined with the poorly

understood circulation at the slope of the head of the channel, or between the channel

and the South bank of the lower estuary. Water masses which do not usually come into

contact probably meet, and their mixing results in the various water masses forming

the temperature minimum at station 24. Several profiles at station 24 contained

intrusions between the two end water masses between σt = 24 and σt = 26.

All profiles at station 14 have an anomalous water mass corresponding to the

dashed line shown on Figure 7.1. The water mass ends on its dense side with an

isopycnal intrusion around σt = 25. If the water mass is extended to σt = 26, it

corresponds more or less to the upper temperature minimum of station 24. Thus the

end points of this water mass could be at σt = 22 and σt ≈ 26 on the main T–S lines
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described by the ‘V’.

The water mass on the dashed line is usually found on the South side of the

channel, where circulation is down-channel. However, it appears at lower densities at

station 11 some of the time.

The intrusions might result from ‘horizontal’ spreading of mixed layers formed

by mixing light waters with dense water heaved over the sill by the large isopycnal

displacement of the internal tide. The intrusions provide clues to the circulation and

mixing at the head of the channel; they also complicate the sampling of overturning

events. It would be preferable to use temperature alone from the CTD to identity

overturns because temperature is easier to measure accurately within overturns than

density (e.g. one sensor instead of combining both temperature and conductivity

within the enhanced gradients of overturns). It is possible to use temperature alone

for most of the profiles of station 11 where the T–S relation is very tight. Yet in

many cases intrusions can be falsely interpreted as overturns. The combined use of

conductivity and temperature in the demanding environment of overturns must then

be used if overturns are to be identified. In known intrusions, no attempt will be

made to identify any overturns.

7.3 Internal Tide Description

If the mixing at the head of the channel is thought to be forced mostly by the shear

associated with the internal tide, then analytic expressions of the internal tide could

potentially be used to compare expected Rig to observed Rig and overturning events,

and to fill the gaps where and when no data were taken.

In this section, I will briefly discuss how my observations differ from the literature

on the internal tide, and why using previous results and analytical expressions of the

internal tide have very limited application in predicting mixing. Work presented here

is by no means the final word, but should serve as a useful guide for future work.
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Forrester (1974) provided a description of the internal tide in the Laurentian chan-

nel from current-meter measurements from nine moorings, located from the head of

the channel to over 100 km toward the mouth of the estuary. He fitted the observa-

tions to modes associated with internal Kelvin and Poincaré modes of various tidal

frequencies, obtaining the vertical modal structure from a mean density profile. Data

were consistent with an internal Poincaré wave in the second vertical mode (one zero-

crossing of isopycnal displacements at 72 m; the first vertical mode is evanescent in

a 25 km channel width using Forrester’s density profile) and first lateral mode, at

frequency M2 and wavelength of 60 km, propagating toward the Gulf in a channel of

320 m depth and 25 km width. Forrester also found some evidence for the presence of

a Kelvin wave at diurnal frequency, also propagating out of the estuary. Since most

of the energy is found at semidiurnal frequency in the lower estuary, the Poincaré

mode is addressed specifically here.

This section will address the following points:

• Effect of the mean density profile on modal shapes, showing that small changes

in the profile lead to different modal shapes (mostly in the depth of the node

for the second vertical mode).

• Comparison of two possible modal shapes with data, showing that an alternate

choice than Forrester’s leads to a more representative node depth for the second

vertical mode.

• Restrictions on vertical modes from channel width, due to the dispersion rela-

tion, showing that the channel may be too narrow at the head to support the

second vertical mode, even though it is observed.

• Comparison of observed shears to second vertical mode, showing that the vari-

ability of the shears could not be adequately modelled as simple internal tides

to obtain analytical forms for Rig to compare against observed mixing. The

observed shear will thus be compared to mixing, but no attempt will be made
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to use analytical forms of Rig to predict where mixing should occur, and how

much it should mix.

7.3.1 Mean Density Profile in Present Data Set—Effect on

Modal Shape

In Forrester (1974), the mean density profile was approximated by the wholly empir-

ical formula

ρ(z) = ρoe
−a/(z+b) (7.2)

where ρo was set to 1028 kg m−3, a = 0.2016 m and b = 29.29 m.

This density profile yielded the vertical modes of the wave, η(z), as the eigenfunc-

tions of

ηzz +

[

N2 − ω2

c2
n

]

η = 0 (7.3)

where η is isopycnal displacement, subscript z indicates differentiation with respect

to z, N2 is the stability—a function of ρ(z)—and ω is the wave frequency (M2 tidal).

Application of the surface and bottom boundary conditions η(0) = η(H) = 0 to

the solution of (7.3), neglecting ω2 with respect to N2, sets the eigenvalues cn for the

n vertical modes of oscillation.

Figure 7.3A compares the density profile chosen by Forrester to profiles of the

present data set at stations 21 and 24, covering about a tidal cycle at each station.

The stations are located on either side of the channel (see Figure 7.2). Water on

the North side is saltier then on the South side because of the sideways estuarine

circulation. Flow on the North side is mostly up the estuary, and barely reverses on

ebb flow. The fresher outflow is mostly restricted to the South side.

Figure 7.3B shows the rms difference in density between observations and the

best fitting profiles for various values of a and b (choosing ρo at each a–b pair to

minimize the difference). Forrester’s choice is shown with a dot, as well as an alternate

choice at a = 0.03 m, b = 2 m. While Forrester’s choice results in slightly less

error, and arguably a much better fit at depth (See panel A), the alternate choice
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profiles over nearly a tidal cycle at station 21 (solid) and 24 (dash) compared to
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Depth of node of the second vertical mode for a channel of depth 320 m (thick) and
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(thin).
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perhaps approximates the steppiness of shallow observations better, although only

very crudely with a sharper pycnocline. Forrester’s choice may be a smoothed best

fit to an average that is never observed2. In any case, the selection of a mean profile

is not very sensitive to the parameter b.

In panel C, the depth of the node of the second vertical mode is shown. It depends

only on the parameter b and the depth of the channel. Forrester used a depth of 320 m,

suitable for the channel as a whole; A curve for H = 250 m is also shown because

it is more representative of the depth at our stations near the head of the channel.

Note that Forrester’s density profile results in a node at 72 m in a channel of 320 m

depth. The node is much shallower (20 m) for b = 2, with not much dependence on

the depth of the channel.

In panels D and E, the vertical modes for isopycnal displacements (D) and ve-

locity (E) are shown for both b = 29.29 m (thick line) and b = 2 m (thin line). In

conclusion to Figure 7.3, very different vertical modes are obtained with two mean

density profiles of slightly different errors with respect to observations. Forrester’s

mean profile may thus lead to wrong modes. The alternate choice for b will be shown

shortly to qualitatively better match observations. Perhaps future work should select

modes by fitting to isopycnal displacements rather than to density profiles.

7.3.2 Comparison of Modal Shapes With Present Data Set

Figure 7.4A shows isopycnal displacements for station 21 and 24 versus tidal phase

(same data as in Figure 7.3A). Sampling at station 24 started 47 hours after sampling

commenced at station 21, but the data are plotted versus barotropic tidal phase such

that they can be compared, with Station 24 repeated. In panel B, the isopycnal

displacements predicted from b = 2 m in Figure 7.3D are shown for comparison.

There appears to be a phase lag with depth of the observed isopycnal motions,

with deeper isopycnals moving later. More importantly, there is no node at 72 m as

2The time-average at every depth is influenced by the heaving due to the internal tide, because
this motion was not removed before the mean density profile before it was fitted
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Forrester’s fit predicted. On the data shown here, there is only a hint of isopycnal

motion near the surface to indicate whether the second mode exists at all. If it does,

its node is much shallower that predicted by Forrester (See also Figure 7.7B for a

more evident node at 20 m at station 11). It appears that the modes obtained using

a = 0.03 m and b = 2 m represent our data better than those chosen by Forrester.

7.3.3 Restrictions on Vertical Modes And Along-Channel

Structure of the Internal tide

The non-uniformity of the channel brings about a problem when the possibility of

existence of various vertical modes is considered. The dispersion relation for Poincaré

waves in the nth vertical mode and mth lateral mode is

k2
nm =

ω2 − f 2

c2
n

− λ2
m (7.4)

where knm is the along-channel wavenumber, f is the Coriolis parameter and λm =

mπ/W is the cross-channel wavenumber in a channel of width W .

Forrester used an average channel width of W = 25 km. Substituting this value

into (7.4), the first vertical mode is not possible because k11 is imaginary. Thus

Forrester looked for a fit against the second and higher modes. However, setting

W to the channel width at the head of the channel, approximately 7.5 km, makes λ1

increase over 3-fold. In this case, only the sixth and higher vertical modes are possible

in this linear theory. Obviously, the observed isopycnal motions in Figure 7.4A are

not in such a high mode.

An imaginary wavenumber translates to a non-propagating wave with an along-

channel decay length-scale of k−1: an evanescent mode. The wavenumber, describing

a propagating or evanescent wave, can be explored for various values of a and b.

Substituting the density profile (7.2) into the governing equation (7.3), and using the

boundary conditions η(0) = η(H) = 0, the following expression for cn is obtained

c2
n =

ga

1
4

+
[

nπ
ln((H+b)/b)

]2 (7.5)
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Location Geometry a = 0.03 a = 0.2019
b = 2 b = 29.29

Far-field W = 25 km 2π/k21 = 35 km 2π/k21 = 60 km
(Forrester) H = 320 m (wave) (wave)
St. 21–24 W = 13.5 km k−1

21 = 10 km k−1
21 = 6 km

H = 320 m (decay) (decay)
St. 11–14 W = 7.5 km k−1

21 = 2.8 km k−1
21 = 2.6 km

H = 250 m (decay) (decay)

Table 7.1: Summary of wavenumber knm for the two sets of a and b values considered,
at three locations along the channel.

Substituting this into the dispersion relation (7.4) yields

k2
nm =

8.065 × 10−9s−2

ga





1

4
+

[

nπ

ln((H + b)/b)

]2


−
(

mπ

W

)2

(7.6)

at tidal frequency and 48◦ Latitude North3. This form of the dispersion relationship

is used to construct Figure 7.5, describing k21 versus parameters a and b for 3 cases

of channel sizes H and W . The wavenumber is very dependent on the parameter a.

Figure 7.5 is summarized in Table 7.1 for the two sets of a and b parameters chosen

thus far.

It is unclear from conflicting isopycnal data (not shown) whether the amplitude

of the internal tide is reduced from stations 11–14 to 21–24. However, as shown in

Table 7.1, the channel widens quickly such that the decay length-scale for the second

vertical mode grows quickly from 3 km to 10 km at the head of the channel. It is thus

possible that the observed second mode at the head of the channel is evanescent, but

that some or even most of the energy leaks out as the channel widens.

3Neglecting the small contribution from the 1

4
term, an nth vertical mode is possible if

ln(1 +
H

b
) < 2.869× 10−5

n

m

W

a1/2

where a, b, H and W are in meters. Using Forrester’s a and b values but local values of H = 250 m
and W = 7.5 km, the first possible mode is the sixth. Using a = 0.03 m, b = 2 m, H = 250 m and
W = 7 km, the first possible mode becomes the fourth.
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250 m, corresponding to the channel geometry at stations 11–14.
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Unfortunately, to confuse the issue, it is possible that the approximation of a

rectangular channel shape is erroneous, and that accommodating a proper (wider)

shape would yield better results. The width of the deep part of the channel varies

from 7 km at the head, to 25 km further down-channel. But the channel opens out

to the South bank at approximately 60 m at the head and at 30 m further Northeast.

The extended width of the head of the channel, taken at the 50 m isobath, is 16 km

(compared to 7 km in the deep channel). The second vertical mode would be free to

propagate in a channel of that width.

Also, a propagating Poincaré wave is not symmetric in the cross-channel direction

(I have not worked out the cross-channel modulation of the evanescent modes of a

Poincaré wave). In the first cross-channel mode, isopycnal displacements should have

a node usually closer to (in this case) the South side of the channel. The isopycnal

displacements should be observed to change sign from side-to-side of the channel.

This is not observed in Figure 7.4, nor are displacements at least reduced on the

South side. It is possible that the cross-channel structure of the evanescent modes

would predict this. It is also possible that the full estuary width should be used, in

which case Station 24 would be close to the channel center rather than close to the

edge. In that case the observed cross-channel phase of isopycnal displacements would

be consistent with theory.

7.3.4 Observed Shears

Figure 7.6 shows observed isopycnal displacements and shears at Station 14. Data

were sampled while the ship drifted in proximity of the station. Sampling was inter-

rupted and the ship was repositioned after a drift of 0.5 nautical miles along-shore or

0.25 nautical miles across-shore from the station. The empty bands in Figure 7.6C

are re-positioning intervals. All finestructure data presented here have these gaps.

Strongest shears were expected near the surface (from Figure 7.6B). Although this

pattern is somewhat observed in panel C, there is a lot more structure than expected,

including some unexpected rotation of the shear vectors. Shear structure appears
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layered along isopycnals (panel D). The average of the surface density slice is taken

in panel E (σt < 21) and a shear vector rotating clockwise at tidal frequency provides

an adequate fit, as seen by low residuals of unorganized patterns in panel F. Note that

along and cross-channel components of shear were independently fitted for phase and

amplitude; both were fitted best with the same phase, such that the shear ellipse is

aligned along the axis of the channel. The fitted near-surface clockwise-rotating shear

vector is consistent with a Poincaré wave. Its phase is along-channel simultaneously

with maximum isopycnal displacements (near high tide, indicated with an ‘H’ between

panels A and C). This is also consistent with a Poincaré internal tide anywhere across

the channel, with the possibility of a sign change of the shear.

While some of the observed shear seems consistent with a Poincaré internal tide,

the cross-channel modulation was not compared to theory, nor were amplitudes (be-

cause of the evanescent mode). Some of the shear variability does not compare well

with predictions in panel B. There is no reason to believe that observed gradient

Richardson numbers should compare well to those predicted from theoretical shears

and the idealized density profile. Even if the onset of mixing could be predicted,

theory would then have to account for the density profile evolving into layers.

7.3.5 Summary of the Internal Tide

In this section, it was observed that

• Forrester’s mean density profile does not match the large gradients near the

surface.

• A wide range of analytical density profiles with various parameters a and b in

(7.2) can fit observations with similar errors.

• The depth of the node of the second vertical mode depends greatly on b. It is

at 72 m for Forrester’s profile (b = 29.29), and at 20 m for b = 2.

• Isopycnal displacements at Stations 21 and 24 are consistent with b = 2, rather

than with b = 29.29.
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ment obtained from CTD casts sampled approximately every 4 minutes, collected at
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• The observed second mode may be evanescent at the head of the channel due

to the narrow width of the deep channel. The e-folding distance varies quickly

from 3 km to 10 km between stations 14 and 11, less than 10 km apart. Thus

large shears measured at the head may only be typical at the head due to a

non-propagating wave. Alternatively, the second mode is free to propagate if

the full width of the estuary is used instead of the deeper Laurentian channel.

• Surface shears are consistent with a Poincaré internal tide at tidal frequency

(M2), but there are some inconsistent deeper large shears that seem homoge-

neous in isopycnal layers.

These observations add to the body of knowledge of the internal tide at the head

of the Laurentian channel. They also raise questions that future investigators should

consider. Modal fits are not a viable solution to predicting mixing because of the

variability of the shear and of stratification so that Rig cannot be modelled well

by a simple analytical form, and because of the effect of mixing itself on the shear

and density profile. The internal tide must be considered as a measured but mostly

unpredicted forcing, and go on from there to compare it with observed overturning.

It is unclear if mixing rates measured here will be applicable to areas further down-

channel because it is uncertain if measured shears are representative of down-channel

forcing (evanescent or propagating wave?). The mixing area could be limited to only

a few kilometers from the head, or it could extend further down-channel.
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7.4 A Mixing Layer with a Tight T–S relation

Density stratification above the temperature minimum of the Laurentian channel is

controlled by the salinity gradient. The effect of the salinity gradient is close to 6

times greater than that of the temperature gradient. In spite of this, temperature

fluctuations can be used directly as tracers of density fluctuations on the North side

of the channel in the tightest parts of the T–S relation (See station 11 on Figure 7.1).

An example is shown on Figures 7.7 and 7.8 showing 5.5 hours of data collected

at station 11 (a shorter and different series than those presented on Figure 7.1).

Figure 7.7A shows the temperature difference between observed temperature and

the temperature at the observed density on the main surface T–S water mass in

Figure 7.1; this shows how far off the main T–S characteristics the water is. Data

gaps are from ship repositioning. All CTD profiles were taken from the surface to

50 m, at approximately 4 minute intervals. The sea state was usually calm, with very

little ship pitch and roll to influence CTD drop velocity (typically 50 cm s−1, with

25 Hz sampling yielding over-resolved samples at 2 cm vertical intervals). Figure 7.7B

shows isopycnal displacements. Figure 7.8A shows gradients Richardson numbers,

calculated as described in section 7.1.1, Figure 7.8B and C shows gray scales of ξN

values calculated over individual overturns by re-ordering density and temperature

profiles respectively, using the unfiltered raw CTD data.

Even on a broad scale, it is difficult to establish a clear relation between Rig

and ξN in Figure 7.8. Some areas where Rig < 1/4 have little mixing activity

(e.g. between hours 4.5 and 5 and at about 10 m depth). Many reasons could

account for this, such as the volume averaging of the ADCP or the difference in

sampling location. However some higher intensity mixing layers do appear related to

low gradient Richardson numbers. This section will focus on one layer where there

appears to be a relationship between these quantities. It is an example of a best-case

scenario where temperature measurements are used to observe overturning events.

The boxes in Figures 7.7 and 7.8 encompass what appears to be the beginning

of a mixing layer in an environment of tight T–S relation. Figure 7.9A shows the
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10 temperature profiles in this patch. Notice the richness in finestructure in the first

few profiles compared to the last. This could suggest the evolution of a mixed layer,

but the difference in velocity between 3 m and 12 m is of order 15 cm s−1, and is

up to 45 cm s−1 between 3 m and 22 m (velocities are not shown). These velocities

translate to an advection distance of ≈ 400 m and ≈ 1250 m between the ship and the

top and bottom of the layer during the 46 minute time span of the sampling. Thus

an energy budget would require assumptions about the horizontal structure and will

not be pursued here.

Only temperature profiles are shown in Figure 7.9A but density profiles would be

fairly close to mirror images. The tight T–S relation in Figure 7.9B shows this. As

a further example, Figure 7.9C shows the T–S relation for a part of the first profile

shown in Figure 7.9A. There are several overturns with temperature excursions of 0.1

◦C which are difficult to see because their deviations from the main T -S line are small

(more about this below). As a consequence, temperature inversions can be related to

density inversions by a proportionality constant which includes both temperature and

salinity effects in density. Figure 7.8 shows both ξN calculated using temperature

and density fluctuations.

The T–S characteristics of Figure 7.9C can be related to the measurements of

an overturn with a ‘perfect‘ CTD. Assuming that the T–S relation is linear in the

water column, then a CTD sampling overturned water will record T and S on the

same T–S line as would were the water not overturning. If only points are plotted,

a T–S diagram from a perfect CTD would show nothing out of the ordinary. If the

measurements are connected by a line, then that line should oscillate between denser

and lighter waters found within the overturn on the T–S diagram. This resembles

what is seen in Figure 7.9C, with very little deviation off of the main T–S line.

When deviations are found, they can be due to enhanced temperature and salinity

gradients within the overturn highlighting any sensor mismatch between temperature

and conductivity sensors. If the deviations are isopycnal, rather than on the main

T–S line, then it is likely that an isopycnal water intrusion was measured rather than
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for part of the first profile. Note the tight relation even within overturning events.



178

an overturn.

7.4.1 Mixing Rates

Forty-three percent of the length of the profiles in Figure 7.9A is overturning. The

average value of Jb = ξN for the layer is 3.4 × 10−7 W kg−1. Difficulties arise

when evaluating a value of the turbulent Froude number to yield an estimate of

buoyancy flux from the isotropic growing turbulence model using Jb = (2/3) ξNFrt.

Since the eye picks up some correspondence between ξN and Rig in Figure 7.8,

some sort of patch averaging seems most appropriate for that layer, if somewhat

arbitrary. Values of ξN and Rig were time-averaged for the 46-minute time span

in each 1-m bin, and averages of ξN were further filtered with a (1
4
,1
2
,1
4
) vertical

moving average as Rig was in the processing of N2 and shear-squared. The layer-

average value of Jb = (2/3)ξNFrt ≈ (2/3)ξN (0.4 Ri−1/2
g ) is 1.2×10−7 W kg−1, using

(7.1) to relate Frt to Rig. However, if the minimum Rig in each 1-m 45-minute

bin is used to estimate the Froude number, then the buoyancy flux is estimated as

1.8×10−7 W kg−1, 50% greater than by using a mean value of Rig. It could be argued

that the minimum Rig observed is dynamically more important than more average

because the overturning can be caused by the lowest Rig measured. This factor can

perhaps be used as a rough estimate of the error in Frt.

The average stratification in the layer is N2 = 10−3 s−2. Combined with the

buoyancy fluxes from both models two and three, this yields an eddy diffusivity of

Kρ = JbN
−2 ≈ 1 to 3 × 10−4 m2 s−1 (Which model should be most suitable will be

discussed in section 7.7). Some averaging is required to compare this value to Ingram’s

mean value along the channel (Kρ = 2 × 10−5 m2 s−1). If only one such layer occurs

every tidal cycle, mixing for 40 minutes, then the time-averaged Kv would be 5.3% of

the layer Kρ. This is very similar to Ingram’s result of 2× 10−5 m2 s−1. Considering

that Ingram calculated the mixing of a layer (not the entire water column) due to

the mixing forcing of the internal tide, it seems reasonable to compare these time-

averaged values of Kρ. Since sampling was only for half a tidal cycle, and that a few
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other mixing layers are observed in Figure 7.8, mixing is slightly more intense during

this 6-hour observation period at the head of the channel than the average mixing

further down the channel (assuming N2 is comparable in both cases such that Kρ is

an appropriate measure of mixing).

Of course, this is only the mixing from one of the patches on Figure 7.8, which

shows only one 6-hour observation. It cannot be assumed that this observation is

typical; a few more observations follow.

7.5 A Mixing Layer in a Loose T–S relation

In the previous section, a mixing layer with tight T–S was shown where temperature

inversions always correspond to overturning. In this section, a time-series from the

South side of the Laurentian channel is presented. It is used to demonstrate how

intrusive water masses are the main difficulty in identifying overturns with a CTD,

even when one uses density to find inversions.

Figures 7.10 and 7.11 show isopycnals, temperature anomaly, Richardson numbers

and the mixing parameter ξN for station 14, as Figures 7.7 and 7.8 did for station 11.

The data shown from station 14 is simultaneous with shear measurements shown

on Figure 7.6 and with the T–S diagram of station 14 on Figure 7.1. The warm

intrusion at σt ≈ 25 described in Section 7.2 and observed on Figure 7.1 is evident on

the temperature anomaly plot, rising to 30 m at 31 hours. The use of either density

or temperature from CTD measurements to identify overturns will not be attempted

within this feature. It will be shown here that more subtle T–S features, which are

not as evident, also cause problems.

The deep data gap in Figure 7.10A is caused by the processing cut-off of the

profiles at 0 ◦C, above the temperature minimum of the water column.
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Figure 7.10: Isopycnal displacements and temperature anomaly at station 14. A-
Temperature anomaly versus depth, where temperature anomaly is defined as T =
37.2838−1.44494σt, the difference between observed temperature and that calculated
for observed σt from least-squares fit between 0 and 6 ◦C for station 011 on Figure 7.1;
B- Isopycnal displacements; The boxes indicate a mixing layer and soliton discussed
in the text.
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Figure 7.11: A- Gradient Richardson numbers at station 14. Black on white contour
line is for Rig = 10, shaded areas for Rig < 1 and white on black contour is for
Rig = 1/4; B- Quantity ξN calculated for each overturn measured using density.
Only overturns with rms ρ′ > 0.005 kg m−3 are shown. Gray scale is log-linear from
10−8 W kg−1 (white) to 10−4 W kg−1 (black); C- ξN calculated for each overturn
measured using temperature as density tracer. Gray scale same as B. The boxes on
all panels indicates a mixing layer and a soliton discussed in the text.
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7.5.1 Intrusive Layers

The first striking feature on Figures 7.10 and 7.11 is the mixing layer shown boxed

between 31.7 and 33.7 hours, consisting of 31 CTD casts. Stratification is very low

for that depth range, gradient Richardson numbers are mostly below 1
4

and the layer

appears to be overturning throughout. Overturning energy, as measured by ξN , seems

rather low. Most of the overturns that occur near the end of the layer are not seen

by re-ordering on density because of the high density fluctuation threshold selected4

The density range within the first half of the layer is fairly constant, but the

layer gets denser during the second half (see Figure 7.10). The T–S relation of the

profile of the first half are shown in Figure 7.12A; the T–S relation of the second

half is denser and is therefore not in the same T–S parameter space. The water gets

progressively warmer with successive CTD casts in Figure 7.12A. It appear that a

family of water masses are present, each on a T–S line going from warm-fresh to

cold-salty. Within each casts, these water masses are seen intruding into each other.

However, the warm-salty to cold-fresh lines joining up these water masses do not lie

on isopycnals; the isopycnal for σt = 21.6 is shown on Figure 7.12B.

Figure 7.12A shows what appear to be intruding stratified water masses, with

the top water mass denser than the one underneath! Figure 7.12B illustrates this;

only parts of the T–S lines which are unstable in density are shown. Instabilities

correspond to overturns when they lie on a unique T–S water mass; in this case, it it

difficult to determine if these are sampling artifacts or real structure.

Temperature and Conductivity Sensor Mismatch

A possible explanation for the density inversions of Figure 7.12B is time-response

mismatch between the CTD conductivity and temperature sensors. This is known

4Only overturns with an rms density fluctuation of 0.005 kg m−3 or greater are shown. Perhaps
this limit could be lessened if density were calculated to a forth significant decimal place. With
the current density values calculated to three significant decimals, it is difficult to establish a good
estimate of the noise level. I opted to err on the side of caution by select only overturns having an
rms density fluctuation of 0.005 kg m−3 or greater.
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Figure 7.12: A- T–S diagram for first 15 profiles of mixing layer described in text; B-
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to result in what is commonly referred to as ‘spiking’. Such mismatch is discussed

in Perkin et al. (1982) and is summarized here. The 14 cm long conductivity cell

has approximately instantaneous response to new water when it has penetrated the

cell 7 mm past mid-point (although the response is to an average property of the

water found between the two electrode pairs, separated by 4 cm). The thermometer

is quoted as having a 50 ms response; its time response is said to be adequately rep-

resented by a simple exponential decay (Perkin and Lewis, 1982) if the drop speed is

held constant. At the descent rate of 50 cm s−1, this corresponds to a length-scale

of 2.5 cm. Since ship pitch and roll were minimal on our cruise, this representation

is thought to be adequate. Thus time-response mismatches could be reduced by cal-

culating salinity and density by combining conductivity with temperature measured

2 cm later, by which time the sensor has caught up with most of the temperature

changes as it can.

Figure 7.12C shows the right-most profile in Figure 7.12A and B with dots. Most

of the density inversions consist of many points and so cannot be dismissed as random

error. The profiles offset to the left are T–S calculated by offsetting temperature and

conductivity by 1 sample (≈ 2 cm), and then 2, and so on to 8 samples of offset.

This is much more than could be accounted for from the known sensor mismatch,

and none of these offsets resulted in eliminating—or even significantly reducing—the

density inversions.

Therefore, time-response mismatch of CTD sensors cannot account for the unusual

T–S structure observed in Figure 7.12A, at least using single-pole transfer functions

for the temperature sensor and instantaneous but delayed response of the conductivity

cell as suggested by Perkin et al. (1982).

Conductivity Cell Flushing

Another explanation for the density inversions of Figure 7.12B involves flushing of

the CTD conductivity cell. This is a narrow tube 14 cm long within which 2 electrode

pairs measuring conductivity are separated by 4 or 5 cm. It is conceivable that the
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overturning circulation would be strong enough at low gradient Richardson numbers

(which is the case here) to prevent proper circulation through the conductivity cell.

However, I will show here that this is unlikely.

While is it true that turbulent velocities increase with decreasing values of Rig,

a brief look at Figures 7.10B and 7.6C indicates that low values of Rig must be

mostly due to low N2. Turbulent velocities are in fact proportional to the inverse of

the shear. From (7.1), the originating relation u′ = 0.4NLT Ri−1/2
g is back-tracked.

Using Rig ≈ 0.15 and N2 in the range of 10−3 to 10−4 s−2, the turbulent velocity

is u′ ≈ (0.02s−1 ± 0.01)LT . Overturning scales would have to be about 10 m for

turbulent velocities to become comparable to the descent rate of the CTD instrument

of 50 cm s−1. Overturning scales are typically less than 1 m.

It is also not obvious that the turbulent velocity field preventing proper flushing

of the conductivity cell would result in the T–S characteristics of Figure 7.12A. The

conductivity ratio between in-situ water and standard sea-water is plotted versus

temperature in Figure 7.12D. The figure includes the profile shown in Figure 7.12C

and the preceeding profile. The curves have a stair-case shape, as might be expected

from interrupting the flushing of the conductivity cell. However, simultaneously with

conductivity remaining constant, temperature would be expected to quickly decrease

and then increase again if the sensor were going through an overturn. This expected

signature is not observed.

In summary, then, it remains a puzzle as to whether the density inversions ob-

served in Figure 7.12A are artifacts. A simple scheme of turbulent velocities associ-

ated with overturns inhibiting proper flushing of the conductivity cell cannot cause

mis-sampling similar to observations.

7.5.2 Mixing Rates

Density inversions found in this intrusive layer do not all occur between different

water masses. Most of the inversions found on the left-hand side of Figure 7.12B stay

mostly along a single water mass. Also, while mixing intensity appears to wane in
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the second half of the layer, the overturns are mostly along a single water mass T–S

line (not intrusive). An example is shown in Figure 7.13 where the second last profile

is plotted in a T–S diagram. Note how inversions in temperature and salinity stay on

the T–S line of the water mass, representative of overturning of the same T–S water

mass. Temperature is a good density proxy in this case.

The mixing rates are computed using the last 11 CTD profiles of the layer in

1-m bins in a manner described in Section 7.4.1. The layer-average value of Jb =

(2/3)ξNFrt ≈ 0.27 ξNRi−1/2
g is 1 × 10−8 W kg−1. Using the minimum Rig observed

in each 1-m time-averaged bin to estimate Frt leads to Jb ≈ 1.7 = ×10−8 W kg−1,

70% higher than with the average Rig.

The turbulent Froude number averaged equally over all bins is 0.85. The average

of the maximum turbulent Froude number found in each bin is 1.51.5

The averaged N2 was 10−4 s−2. The layer-averaged Kρ = JbN
−2 = 1 to 1.7 ×

10−4m2 s−1. These mixing rates will be compared to those of the previous layer in

section 7.7, after a last mixing layer (forced by solitons) is presented

7.6 Solitons

In this section, the observations of what are thought to be solitons are discussed. The

mixing they induce is estimated and translated to a decay time.

7.6.1 Observations

Most of the isopycnal displacements at station 14 show fairly low frequency oscilla-

tions (see Figure 7.10B). However, there is a deep and fast depression of the surface

isopycnals before sampling was interrupted at 35.25 hours, and again at 36.25 hours.

5We can define an overturn-averaged turbulent Froude number weighted by overturning intensity
as
∑

(ξNFrtL)/
∑

ξNL, where L is the size of each overturn, and the sums are over all overturns.
This would yield the average Frt in energetic areas. Surprisingly, the result is 0.83 using the average
value of Frt in each 1-m time-averaged bin, and 1.45 using the minimum Frt in each bin; These are
very similar to the bulk averages.



187

5.6

5.65

5.7

5.75

T
 (

°C
)

27.88 27.9 27.92 27.94 27.96 27.98 28 28.02
S (PSU)

Figure 7.13: T–S relation at the second from last profile of the first mixing layer at
station 14. The mixing layer is discussed in the text. Note here how inversions stay
on the T–S water mass line.



188

This is also seen in Figure 7.10A where anomalously warm water plunges to 25 m

deep. These isopycnal excursions are thought be solitons passing by.

Two facts support the interpretation of the isopycnal depressions as solitons. First,

similar CTD data were collected the following summer, in July of 1989, and the same

pattern was observed and is shown in Figure 7.14A. In a series of three CTD casts

the isopycnals were depressed and restored. Simultaneous 200 kHz acoustic echo-

sounding reveals a very smooth motion resembling the observations of a “sech2” shape

by Sandstrom and Elliott (1984) on the Scotian shelf. The second reason why these

observations are consistent with solitons is that they are always observed within 1

hour of low tide. Such motions were observed on all five occasions when that phase

of the tide was sampled, on both sides of the channel. This is consistent with tidally

generated solitons.

There are some variations. Sometimes the depression extends to isopycnals deeper

than 50 m, sometimes to only 15 m deep. Usually two or three solitons consecutive

are observed, sometimes only one.

7.6.2 Generation Point

Ingram (1978) observed solitons in the shallower South channel, 15 km up the chan-

nel and to the South of station 14. The solitons Ingram observed were travelling

down-channel 3.5 hours after high tide. To travel the 15 km separating station 14

from Ingram’s observation point in 1.5 hours, solitons would have to propagate at

2.8 m s−1./footnoteLow tide at Station 14 in Figure 7.10 occurs at 36:50 hours, such

that the first soliton appears approximately 1.5 hours before low tide.. Since Ingram

observed them to be travelling at ≈ 0.8 m s−1, they are unlikely to be the same

solitons originating from a tidally-timed event.

Shear was measured at station 14 simultaneously with the passage of the soliton

using the ADCP (See Figure 7.6C). One of the periods where shear is poorly fitted

by the rotating-vector of the internal tide in Figure 7.6E and F corresponds to the

passage of the soliton. It is argued now that the shear measured during that time
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should not be associated with the internal tide, but rather with the soliton. In the

presence of additional strain, I argue that that internal tide shear should not be a

conserved, but that rather the transport (volume flux) between isopycnals should be

conserved; the vertical derivative of transport velocities leads to shear. If isopycnals

are strained by a soliton by a factor γ, the velocities associated with internal tide

transport are reduced by γ. Furthermore, shear—already reduced because velocities

are smaller—should be reduced by another factor γ from spreading of the isopycnals.

Since isopycnals around 5 m in depth plunge to more than 20 m with the soliton, the

shear signature of the internal tide should be reduced to noise level, and the shear

should be due to the soliton itself.

Shear during the passage of the soliton is such that it was was travelling down-

channel (toward the mouth of the estuary). The generation point is thus probably the

sill. This, and the soliton’s passing at low tide, is consistent with models of soliton

generation as lee-waves. Tidal flood could create a lee-wave on the other side of the

sill. As ebb flow starts, the lee-waves are free to propagate off the sill and evolve

into solitons. A delay of 5 hours before their observation at station 14 would put the

generation point at 18 km up-channel using an approximate propagation velocity of

1 m s−1. This is an approximately correct distance to the other side of the sill. While

this generation process of the solitons remains only a guess, the timing of their arrival

provides an important clue for future investigators. These solitons appear unrelated

to those observed by Ingram (1978).

7.6.3 Mixing Rates

Overturning events and overturning potential energy are maximum at the onset of

isopycnal deepening (see Figure 7.10). Deep isopycnals plunge before ones close to the

surface. Mixing seems to follow this pattern as well, starting at depth and progressing

toward the surface. A very energetic overturn is also observed at the leading edge

of another soliton in Figure 7.14, but the overturn is close to the surface this time.
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Mixing at the leading edge of solitons is consistent with Bogucki’s (1991) simple 2-

layer model, separated by a pycnocline, for the propagation of a soliton. In Bogucki’s

model, the interface is thickened by the soliton’s shear until the layer Richardson

number reaches an upper limit when mixing stops.

Figure 7.15A shows a temperature profile with two of the most energetic overturns

observed associated with the soliton. The profile was taken at 36.18 hours. The

vertical lines in Figure 7.15A delimit the extent of the 2 overturns. The T–S relations

for each of these are shown in Figure 7.15B and C. The top overturn is 5 m in size,

and has big temperature fluctuations (≈ 0.8◦C). The second is 19 m in size, but has

lower rms temperature fluctuations of 0.025◦C, which is still an order of magnitude

above noise level. Both overturns have good tight T–S relations and there is no doubt

that they are real. Upon close examination of the temperature profile, it could be

argued that the top overturn is actually made up of two. If that is the case, there is a

temperature overlap of 0.15◦C between the two features which is due to mis-sampling.

This is much greater than noise level (a few millidegrees). In any case, the potential

energy of the overturns, ξ, would not be significantly different for a ‘corrected’ case

if one choose to ‘correct’ the temperature profile to eliminate the overlap.

Using either density or temperature fluctuations to evaluate ξ results in a 20%

difference in Figure 7.15B, mostly because the overturn extends 1 m deeper evaluated

on density. The difference is only 6% for Figure 7.15C. Density fluctuations will be

used for this series, but either would do.

The mixing rates are computed for all 13 CTD profiles in the same manner as de-

scribed in Section 7.4.1. The layer-average value of Jb = (2/3)ξNFrt ≈ 0.27 ξNRi−1/2
g

is 1.6 × 10−6 W kg−1. Using the minimum Rig observed in each 1-m time-averaged

bin to estimate Frt leads to Jb ≈ 3.7 × 10−6 W kg−1, 125% higher than with the

average Rig.

The averaged N2 was 4 × 10−4 s−2. The layer-averaged Kv = JbN
−2 = 6 ×

10−3m2 s−1.

Assuming that the total energy of the soliton scales like N2A2, where A is the
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New layer Well mixed Soliton

N2 [s−2] 10−3 10−4 4 × 10−4

Jb ≈ ξN [W kg−1] 3.4 × 10−7 1.7 × 10−8 2.4 × 10−6

Jb ≈ (2/3) ξN(0.4Ri
−1/2
g ) [W kg−1] 1.2 × 10−7 1 × 10−8 1.6 × 10−6

Jb ≈ (2/3) ξN(0.4Ri
−1/2
gmin ) [W kg−1] 1.8 × 10−7 1.7 × 10−8 3.7 × 10−6

Frt 0.47 0.85 0.59
Frtmax 0.73 1.51 1.46
Kρ [m2 s−1] 1 to 3 ×10−4 1 to 1.7 ×10−4 4 to 9 ×10−3

Calculation Depth 12 to 22 m variable 5 to 25 m
Duration 45 minutes 2 hours 53 minutes

Table 7.2: Summary of mixing layers

amplitude, the energy is ≈ 0.8 m2 s−1 using N2 = 4 × 10−4 s−2 and A = 45 m.

Considering that the turbulent Froude number inferred from Rig is approximately

equal to 1, an inertial-buoyancy balance may hold. In this case, let us assume con-

servatively that there is an equal amount of dissipation of turbulent kinetic energy

as there is buoyancy flux (Γ = 1). This is a lower bound on the rate of dissipation

of turbulent kinetic energy. The total dissipation rate (TKE plus potential) is then

> 5×10−6 W kg−1. It would take 44 hours to dissipate all the soliton’s energy at this

rate. The soliton would travel 160 km at a typical propagation velocity of 1 m s−1.

7.7 Comparison of the Mixing Layers

The mixing rates obtained for the three mixing layers are summarized in Table 7.2.

A brief discussion follows.

New Mixing Layer

The first mixing layer was observed in the beginning stages of mixing: The first

temperature profiles had very high stratification and much overturning finestructure

(see Figure 7.9). As the mixing progressed, stratification decreased while overturning
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length scale increased such that the APEF remained about constant.

The average Frt over all bins and the average of the maximum Frt in each 1-m

thick layer were both the lowest of the three mixing layers. The average maximum

Frt is evaluated using the minimum gradient Richardson number in each 1-m thick

layer. Perhaps this value is more indicative of the dynamics; the minimum Rig

reached should be more relevant than some mean value. The averaged-maximum Frt

is 0.73, which is very close to the maximum value of (Frt)isoIB = 0.8 estimated in

chapter 4 for growing isotropic turbulence reaching inertial-buoyancy balance. This

value of Frt seems to indicate that overturns created at the onset of mixing are in an

inertial-buoyancy balance. Note, however, that this is an average value of Frt. Many

lower values are found and it is possible that the turbulent Froude number is under-

estimated by a factor of 2 because the critical Richardson number where overturning

starts is ≈ 1 instead of 1/4 (see Figure 7.16A).

The buoyancy flux obtained using model two’s Jb ∝ Ri
−1/2
gmin or model three’s

Jb = ξN are both relevant at isotropic inertial buoyancy balance. They give a sim-

ilar buoyancy flux within a factor of 2 (although the coefficient for model three is

adapted to higher values of Frt for which anisotropy is greater; its buoyancy flux

formulation overestimates slightly for isotropy because the TKE is under-estimated).

Thus while model two or three should apply to this layer, because it appears to be at

critical Richardson number (isotropic inertial-buoyancy balance where both models

converge), model two would be applied were it not at critical Richardson number (as

it may be if Rig is under-estimated) because there is evidence that the layer is newly

mixing, and thus that turbulence may be growing; if Rig is not under-estimated,

the overturning appears to be created already at inertial-buoyancy balance, perhaps

through K-H instability.

Well Mixed Layer

The second layer observed had Kρ about the same as the first layer, but the buoyancy

flux estimates are one order of magnitude smaller because of the smaller stratification.
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The turbulent Froude number is estimated to be twice the value of the previous case,

meaning that this layer has a lower mixing efficiency.

Since the layer has unusually low stratification, it has probably been mixing for a

long time. To illustate this, note that using Kρ = 1.5×10−4 m2 s−1 and a thickness of

H ≈ 10 m, the time to mix to completion is H2/(12 Kρ) ≈ 15 hours. The layer may

have been mixing for a few hours, unless its low density gradient is caused by strain

from the internal tide. It seems reasonable to assume that the third model should

apply, describing anisotropic steady-state turbulence at inertial-buoyancy balance. In

this case the buoyancy flux is 1.7 × 10−8 W kg−1 (the same result is obtained with

the second model) and the isotropy is estimated as Lh/LT = Frt = 1.51.

Soliton

The mixing associated with the soliton occurs mostly at its leading edge. The eddy

diffusivity Kρ is nearly 2 orders of magnitude higher than for the other two layers

described. The buoyancy flux is 20 times higher than the average of the first layer.

The averages listed in Table 7.2 are for one or two solitons (the trailing edge of one

is sampled before the leading edge of the main one sampled), but over nearly an

hour. This leads to the unexpected result that solitons are a very important source of

mixing at the head of the Laurentian channel. Solitons are probably more important

than the internal tide, which is thought to be generated there. This is a new result.

For this layer, the turbulent Froude number based on minimum Rig is 1.46, which

is as high as for the well mixed layer previously discussed. In this case the mixing is

known to be new because of the sudden appearance of the soliton. Since there is no

reason for the overturning to be created at inertial-buoyancy balance in this case, it is

assumed that the turbulence is growing. In this case, the second model is appropriate

and the buoyancy flux is estimated as Jb ≈ 3.7 × 10−6 W kg−1.
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7.7.1 Comparison to Wind Mixing

Oakey et al (1982) measured approximately 1% of the work done by wind stress below

10 m, E10, as dissipation of turbulent kinetic energy, where E10 is

E10 = ρaC10U
3
10 (7.7)

and ρa is the density of air (≈ 1.2 kg m−3), C10 is a drag coefficient (1.3 ×10−3) and

U10 is the wind speed measured at a height of 10 m. Most of E10 is dissipated in the

atmosphere above the water.

If buoyancy flux is approximately equal to a quarter of the rate of dissipation

within the water (assuming that mixing efficiency in this possibly high Frt flow is

below the maximum inertial-buoyancy balance value), then a 10 m s−1 wind corre-

sponds to a depth-integrated buoyancy flux of 4 ×10−3 W m−2. If this mixing occurs

in the top 20 m of the water column, the buoyancy flux is 2 × 10−7 W kg−1. This

is an order of magnitude lower than instantaneous buoyancy flux from solitons. In

addition, shear layers mix water (and nutrients) up without unduly disturbing the

surface waters like wind mixing does. Thus nutrients may be mixed up into surface

waters with little mixing of plankton down below the photic zone.

7.8 Relating Mixing to Shear

Recent work by Gregg (1989) has shown promising results in relating the shear forcing

the mixing directly to the dissipation of turbulent kinetic energy, ǫ. This effort is very

worthwhile because mixing could be inferred by simple measurements of shear rather

than the more technical difficult task of measuring microstructure, or even finestruc-

ture. All three models of finestructure which have been compared in this thesis will

be tied to Gregg’s shear-dissipation relation. This will gives three predictions for ξN

as a function of shear which can tested tested with our data.
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7.8.1 Background of the Gregg Model

In order to understand and quantify fluxes of heat and mass in the ocean, and to

provide numerical modellers a basis on which to set eddy diffusivities, theories for

the scaling of turbulent kinetic energy dissipation rate as a function of stratification

and energy level have been derived. These include scalings like ǫ ∝ N1−1.5 (Gargett

and Holloway, 1984), ǫ ∝ f
1

2 N
3

2 E
3

2

GMe−c/EGM (Munk, 1981) where EGM is the energy

level associated with the Garrett-Munk model, ǫ ∝ N2 (McComas and Muller, 1981)

and more recently ǫ ∝ E2
GMN2cosh−1(N/f) (Henyey et al., 1986) based on the rate

of energy transfer from low to high wavenumber by wave-wave interactions.

These theoretical formulations typically use a constant energy level of internal

waves, but over periods of days to weeks the true energy level EIW can vary by factors

of 2-3 relative to EGM . Gregg (1989) therefore assumed ǫ ∝ E2
IW N2 (dropping the

small cosh−1(N/f) variation in Henyey et al. (1986)) and used the integrated shear

variance of the Garrett-Munk spectrum to obtain EGM ∝ SGM
2. Assuming that the

variable energy level still follows the Garrett-Munk spectral shape, an estimate of

EIW can be obtained by measuring the in situ shear. The estimated dissipation is

ǫ = 3.5 × 10−10 N2

NGM

S4
10

S4
GM

(7.8)

in units of W kg−1, where S10 is the shear measured on a scale of 10 m..

The dissipation relation can be further simplified. The Garrett-Munk shear is

related to a reference stratification of NGM = 0.0052 s−1 as (Gregg, 1989)

S2
GM = 1.91 × 10−5 N2

N2
GM

(7.9)

Defining a 10 m Richardson number Ri10 as N2
10/S

2
10, dissipation becomes

ǫ = 2.6 × 10−5Ri−1
10 S2

10 (7.10)

in W kg−1 using S10 in s−1.

This relation for dissipation in the main thermocline (which assumes a Garrett-

Munk spectral shape), has surprisingly been shown to hold to within a factor of 2 in
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four different sites. In fact Gregg (1989) adds the factor of 2 which better collapses

the data. The relation becomes 5.2 × 10−5Ri−1
10 S2

10 in W kg−1 (Gregg, 1989).

7.8.2 Relating Gregg’s Model to ξ

Gregg’s model can be written in terms of mixing intensity ǫ/νN2 as

ǫ

νN2
=

52

Ri210
(7.11)

using (7.10), ν ≈ 10−6 m2 s−1 and incorporating the factor of 2.

This relation (7.11) cannot be compared directly to the finestructure measured

from the St. Lawrence, except for the first model. However, the two other models

from chapter 3 relate ǫ to ξN for known values of Ri10. The Gregg model will be

linked to each model via ǫ–ξN conversions such that measured values of ξN/νN2

can be compared to Gregg’s predictions coupled to the models. It most be noted

that Gregg’s model yields an average predicted value of ǫ, which will be compared to

instantaneous measurements of overturning.

Model One

In the first model, the relation Lo = LT leads to a direct estimate of dissipation from

measurements of ξN . Combined with (7.11), ǫ ≈ 2ξN simply becomes

ξN

νN2
=

26

Ri210
(7.12)

Model Two

In the second model, the ratio ξN/ǫ is related to Rit ≈ 6.2 Rig using (3.23) Linked

with (7.11), this becomes becomes

ξN

νN2
=

ǫ

νN2

ξN

ǫ
≈

52

Ri210

1

2
(6.2 Ri10)

3/2 ≈ 400 Ri
−1/2
10 (7.13)
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Model Three

In the third model, the ratio of ξN/ǫ is simply the mixing efficiency Γ = Rit/2 =

3.1 Ri10. Combined with Gregg’s model, this gives

ξN

νN2
= 160Ri−1

10 (7.14)

The Comparison

Values of ξN/νN2 are shown in Figure 7.16 for the three mixing layers discussed in

this chapter. The values are 1-m thick time-averages and are shown versus both the

time-average gradient Richardson number of each 1-m layer (calculated in logarithmic

space) and versus the minimum value of Rig found in each 1-m. Gregg’s prediction

for ǫ/νN2 is shown in relation to each of the three model by the three lines.

The use of the minimum Richardson number leads to slightly better fits. The

soliton data have approximately the proper slope for model two of growing turbulence,

but have values of ξN/νN2 an order of magnitude higher than expected. This should

not really come as a surprise because there is no reason why mixing should follow

internal wave transfer rates. This was also the most intense case of mixing encountered

in this data set.

Well-mixed layer data are scattered in Figure 7.16A and have values of ξN/νN2

too low to fit the third model. The new mixing layer data could be argued to fit any

of the three models.

The data from the three mixing layers do not collapse under Gregg’s turbulence

scaling. It would be difficult to determine if the ξN to ǫ conversion models are

not correct, or if Gregg’s model does not apply to these circumstances. The latter

seems the most reasonable. Gregg’s dissipation dependence on shear is a function

of internal wave energy transfer rates. The only mixing layer described here which

could be argued to be forced by internal waves (although not the typical Garrett-

Munk spectrum) is the newly-created mixing layer, which appears to have overturns

created at inertial-buoyancy balance. Perhaps this is a factor affecting the success
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Figure 7.16: Comparison of Gregg’s model with observed finestructure. A- ξN versus
minimum Rig in each 1-m thick time-average layer; B- ξN versus log-averaged Rig
in each 1-m thick layer; Data are from (•) new mixing layer, (◦) well-mixed layer and
(2) soliton. The lines are, from the steepest, combination of Gregg’s model with the
first model (ǫ = ξN), with the third model (Jb = ξN) and with the second model
(Jb = (2/3)ξNFrt).
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of the Gregg model in that case. Perhaps a comparison with more averaging would

yield closer results.

7.9 Summary

In this chapter, CTD and ADCP data were combined to study mixing layers at the

head of the Laurentian channel. The main results are as follows

• The T–S characteristics at the head of the channel were observed to change

quickly in space. Two different water masses are found above the temperature

minimum at station 24. The warmer water masses may be formed by deep

water—usually below the temperature minimum—put into contact with shal-

lower water from above the temperature minimum. Large internal tide isopycnal

displacements could do this by ‘upwelling’ water over the bank or the sill. The

water mass formed by the mixture of the two end members is seen mostly on

the South side of the channel, but it also intrudes into the North side.

• The internal tide was studied following Forrester (1974). It is unclear if the

internal tide, thought to originate from the head of channel, is evanescent. If

so, then the large shears observed at the head are only typical of the first

few kilometers away from the generation point, and mixing rates described here

cannot be applied further downstream. Results are summarized in section 7.3.5.

• The gradient Richardson number was used to infer the turbom tt Froude number

as suggested in chapter 3, and verified in chapter 4. Figure 7.16 shows that the

minimum observed Rig in 1-m layers varies by a factor of 10 in each of the 3

mixing layers observed. The highest value of Rigmin which still produces mixing

is about 1, instead of 1/4. This means that the turbulent Froude numbers may

be under-estimated by a factor of 2. Buoyancy fluxes quoted using Frt are thus

lower bounds.

• Three mixing layers were examined, summarized in Table 7.2.



202

– The first appears to be starting to overturn. The lowest average values of

Frt were observed in this layer, for which overturning is thought to occur

at inertial-buoyancy balance. Stratification is very high. The T–S relation

is very tight, even within overturns. Temperature can be used as a density

proxy without worry about intrusions. Model two for growing turbulence is

a good choice for this layer, since it appears to be new, growing turbulence.

Buoyancy flux from model three is only two times higher, because of the

proximity to inertial-buoyancy balance.

– The second layer has very low stratification and low Rig. The correspond-

ing high Froude numbers and the low N2 indicate that model three is

appropriate to describe this layer as steady-state turbulence at inertial-

buoyancy balance, but slightly anisotropic because the layer is thought to

have been mixing for some time. The first half of the layer has a loose T–

S relation in which unusual density-unstable features are found. Different

water masses, between which the measured density profile is unstable, are

layered. I do not think that they are overturns but cannot explain them.

Although these structures cannot be explained, they have been detected

and can be disregarded in mixing quantification. This shows that a con-

ventional CTD, used in low wave conditions from a stable platform and

in shallow depth with strong gradients of temperature and salinity, can

sample T and S adequately to measure overturns and differentiate them

from even slight intrusions in most cases.

– The third layer is associated with the passing of solitons. Mixing is max-

imum at the leading edge of the soliton. The eddy diffusivity and buoy-

ancy flux are respectively 100 and 20 times higher than the first layer

described. Since overturning is new, model two is appropriate. If Frt is

under-estimated by a factor by two, model two predicts buoyancy fluxes

three times higher than model three for this layer. This is the largest

difference between models observed between the three layers.
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• Although mixing was never measured at the head of the channel, many authors

have anticipated that the larger shears associated with this generation area of

the internal tide is responsible for high mixing rates. I have shown here that

solitons may in fact be more important. Buoyancy flux averaged over an hour

was 20 times higher than the second highest buoyancy flux (the new layer),

which was a 45-minute average. Since solitons pass by at each low tide, this is

also a ‘steady’ source of mixing, like the internal tide.

More solitons and internal tide-forced mixing layers need to be quantified before

solitons are positively demonstrated to be more important for mixing, but this

research clearly points in that direction.

• Further mixing studies should focus on the possibility of deep waters overflowing

onto the shallower South channel or the sill, where it can mix with the shallower

waters. This mechanism may be responsible for the intrusions we have observed.

This internal tide effect may also be more important than mixing forced by the

large scale shears of the internal tide.

• The data from the three mixing layers were compared to chapter 3’s three

models linked to Gregg’s (1989) relation of ǫ to shear. Only the new mixing

layer was consistent with Gregg’s model.



Chapter 8

Discussion and Conclusions

In one sentence, the conclusion to this thesis is that “Buoyancy flux can be inferred

in a shear-stratified flow by the measurements of the APEF, of the density gradient

and of the shear”. Let us now use a few more words to qualify and quantify this

sentence.

8.1 New Ideas In Mixing Models

Microscale measurements of the rate of turbulent kinetic energy dissipation ǫ and

of the rate of dissipation of temperature variance χθ are most often used to infer

buoyancy flux.

The assumptions of i) constant mixing efficiency and of ii) a duration time of

order N−1 for the mixing associated with an overturn, lead to what I have termed

“the traditional model” relating overturning length scales LT to the dissipation of

turbulent kinetic energy ǫ. It is the first model used in the thesis, as a comparison

to new ideas.

The first model is perhaps misleading, relating a length scale constructed from

dissipation ǫ and stratification N2, i.e. the Ozmidov scale LO = (ǫ/N3)1/2, to over-

turning scales. Albeit LO has a physical interpretation as the largest still isotropic

overturn size in the presence of stable stratification, it is obtained from microscale

204
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measurements. The inference is that Thorpe scales are related directly to the rate

of dissipation of turbulent kinetic energy, and then only to buoyancy flux through

a constant mixing efficiency. This implies a balance between inertial and buoyancy

forces.

Buoyancy flux should be thought of as an overturn-scale quantity; Moum (1990)

has shown that the largest contributions to the the correlation w′ρ′ are at overturning

scale. I have argued in chapter 3 that the buoyancy flux and potential energy dissi-

pation are both related directly to the APEF, ξ. The presumption is that buoyancy

flux accumulates into a stock-pile of ξ, which in turn is usually dissipated as fast as

it is being produced (i.e. Buoyancy flux adds potential energy to the APEF; that

energy is then dissipated and raises the center of mass of the water column). If the

fluxes in and out of the APEF increase, the APEF must also increase. The buoyancy

flux can be inferred from ξ if the decay time of an overturn, and therefore of ξ, is

known. In this view, Thorpe scales—related to the APEF—are linked to buoyancy

flux directly beacuse the APEF is potential energy created by buoyancy flux. The

APEF is then related to ǫ through a mixing efficiency, which can be predicted from

the ratio of kinetic to potential energy of the overturn. This is in contrast to the first

model. In this new view, the potential energy of the overturn (APEF) is argued to

be proportional to potential energy flows Jb and dissipation of potential energy; this

holds for any ratio of inertial to buoyancy forces, and is argued to be a more general

assumption than model one.

The assumption that the dissipation of potential energy at microscales, 3N2κT Cx,

is equal to the buoyancy flux Jb which may occur at larger scales is used for models

two and three described in chapter 2. Dillon et al. (1987) assume that 3N2κT Cx is

an upper bound to buoyancy flux. Perhaps if turbulence is growing (e.g. model two)

then this is a better assumption; however it is assumed that the rate of change of

the APEF during growth is smaller than either buoyancy flux or the dissipation of

potential energy.

Some of the pertinent questions addressed in this thesis are then
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• What is the decay time of an overturn, and therefore the decay time of ξ from

dissipation of potential energy, or equivalently the growth time of ξ through Jb?

• Do the mixing efficiency and decay time vary sufficiently that the distinction

between overturning scales being related to Jb rather than to ǫ matters?

• Can this method be used with conventional CTD instruments? What are the

difficulties?

8.2 Decay Time

Rather than picking a decay time of N−1 as in the first model, the decay time for

the APEF is taken to be the decay time of the turbulent kinetic energy by ǫ. The

turbulent kinetic energy decay time scale is implicit to the Kolmogorov spectrum.

If ǫ is constant at all scales of a cascading energy spectrum, then it must scale like

ǫ ≈ u3/L. If the turbulence is not isotropic and the Kolmogorov spectrum still holds,

then L is the energy containing scale: the horizontal turbulent scale. The assumption

that ǫ ≈ u3/L was shown to hold very well in slightly anisotropic grid-turbulence data

in chapter 4. The decay time of the turbulent kinetic energy 3u′2/2 by dissipation

u′3/L is then (2/3)L/u′.

8.2.1 Second Model

If the overturns are isotropic, the ratio of the decay time scale (without the coefficient)

L/u′ to the buoyancy time scale of N−1 yields a turbulent Froude number Frt =

u′/NLT . This is often written as a turbulent Richardson number Rit = N2L2
T /u′2,

describing the ratio of ξ to one horizontal component of turbulent kinetic energy.

In grid-turbulence, the decay time can be very short such that u′ ≫ NL (Frt ≫ 1).

In this case, buoyancy forces are much smaller than inertial forces. Furthermore, the

mixing efficiency is low because, in spite of the high kinetic energy, the buoyancy flux

and APEF are limited by the small overturning scales, because density fluctuations
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associated with the turbulence are proportional to the vertical overturning scale.

Turbulent scales then grow without feeling the effects of buoyancy, until u′ ≈ NL

(Frt ≈ 1). At this stage, mixing efficiency is maximum, and the decay time scale is

≈ N−1, determined by the balance of inertial and buoyancy forces.

The above description is of the second model for growing isotropic turbulence.

Using Frt and Rit to parameterize the decay time, its buoyancy flux is written Jb ≈
[

3
4
± 1

4

]

ξ N Frt, and its mixing efficiency is Γ ≈
[

3
4
± 1

4

]

Rit/3. This model was shown

to hold within a factor of two for Frt > 0.8, using grid turbulence data in chapter 4.

Unfortunately the inertial-buoyancy balance stage of maximum mixing efficiency was

not sampled because turbulence dies-out before reaching it.

In the presence of shear, a third time scale is possible in addition to N−1 and

L/u′: the inverse of the shear (∂U/∂z)−1. It was postulated in chapter 3 that tur-

bulent velocity fluctuations derived from the shear must be proportional to it as

u′ = a LT ∂U/∂z. In chapter 4, this was tested using published grid-turbulence re-

sults in the presence of shear; we find a ≈ 0.4. The decay time scale (2/3)L/u′ is

then also parameterised by the large scale flow as (5/3) (∂U/∂z)−1. The turbulent

Richardson number—and hence mixing efficiency—is then proportional to Rig. We

obtain Rit ≈ 6.2 Rig. The coefficient is important. The maximum value of Rig which

still promotes instability and overturning corresponds to the inertial-buoyancy bal-

ance values of Rit and Frt. This critical value determines the maximum ξ/TKE ratio

for overturning, setting the maximum value of mixing efficiency. The current esti-

mate, from chapter 4, is Rit ≈ 1.55 at Rig = 1/4; this corresponds a maximum mixing

efficiency of Γ ≈ 0.52. This value is tentative. None of the decaying grid-turbulence

experiments have sampled the inertial-buoyancy balance stage. Future experiments

should focus on it.

The inference of Frt from Rig was attempted in chapter 7 using acoustic Doppler

current profiler data sampled at 1 m intervals. The main difficulties were i) to av-

erage N2 to match the implicit filtering of shear from the ADCP sampling and ii)

to bin-average Rig and ξ on time and depth scales such that the two quantities are
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correlated. The first difficulty is rather straightforward, the second is less. The choice

of the bin-averaging of ξ and Rig was arbitrary. A much better scheme would look

at evolution of the cross-correlation of ξ with Rig with increasing averaging. How-

ever, best results could come from future instruments measuring both the density

and meter-scale shear profile from the same vehicle. Present data showed that a

dependence between ξ and Rig could not always be found, but encouraging corre-

spondence was found for the most active mixing layers. The correspondence was

better when using the minimum Rig observed in each bin rather than a logarithmic

average. The critical gradient Richardson number was approximately 1, higher than

in grid-turbulence in the presence of shear. The buoyancy fluxes derived from the

second model using Frt are possibly under-estimated by a factor of 2 because of this.

New technology broad-band ADCPs should do much better in resolving the small

scale shear with lower errors, and yield better gradient Richardson numbers. It was

found in chapter 7 that Gregg’s (1987) model relating ǫ to shear did not collapse all

(ξ/νN2)—Rig data from three different mixing layers. While the slope of the depen-

dence resembles Gregg’s model, the intensity varied by an order of magnitude either

way.

8.2.2 Third Model

A third model is derived in chapter 3, describing steady-state mixing layers for

which overturning scales have out-grown the layer thickness, e.g. a surface mixed

layer. If vertical overturning scales reach the layer thickness before inertial-buoyancy

balance, horizontal scales are still free to grow, leading to anisotropy. Horizontal

scales are still linked to vertical scales through continuity. It was argued in chapter 3

that horizontal growth stops when the vertical kinetic energy is balanced by buoyancy

forces. The steady-state horizontal length scale is the Ozmidov scale LO for steady-

state turbulence at inertial-buoyancy balance; the ratio LT /LO describes the level

of isotropy. The decay time is ≈ N−1, but the mixing efficiency is affected by the

isotropy described by Γ ≈ (LT /LO)2. The ratio LT /LO also describes the energy
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separation between kinetic and potential, which affects the mixing efficiency. The

buoyancy flux is Jb ≈
[

3
4
± 1

4

]

ξN and the mixing efficiency is Γ ≈
[

3
4
± 1

4

]

Rit/2.

8.3 Mixing Efficiency

The second and third models make very similar predictions about mixing efficiency;

only the coefficient changes. But the models describe quite different turbulence for

low mixing efficiencies. In the second model, low mixing-efficiency is characterized

by isotropic turbulence with small overturning scales relative the inertial-buoyancy

scale ≈ LO, turbulence does not feel the effect of buoyancy. In the third model, low

mixing-efficiency is characterized by anisotropy and turbulent velocities limited by

buoyancy forces. In both models, the turbulent Richardson number Rit quantifies

mixing efficiency because it describes the ratio of potential to kinetic energy. The

generalized form of Rit in terms of length scales combining both the inertial-buoyancy

balance and isotropy factors is Rit ≈ L2
T /(L

4/3
O L

2/3
h ) (using ǫ ≈ u′3/Lh).

Both the second and third models predict a wide range of mixing efficiency for

various turbulent conditions possible. This is in contrast to the first model which uses

a constant mixing efficiency. The only oceanic data set reviewed in this thesis, with

sufficient information about mixing (e.g. ǫ and Jb estimates) to distinguish between

the models, was Dillon’s (1982) oceanic and freshwater data. The mixing efficiency

varies by an order of magnitude within each of Dillon’s three data sets, and by two

orders of magnitude within all three data sets. This is incompatible with the first

model. The variation of the mixing efficiency is consistent with both models two and

three (because of error bounds). Models two and three are thus preferable to model

one in energetic mixing regions.

The new APEF approximation ξ ≈ (g/2ρ)LT ρ′21/2
found in chapter 2 was used

with Dillon’s data because the APEF was not tabled. This improved our ability

to test the models because the usual approximation N2L2
T /2 was shown to over-

estimate by a factor of more than 2 for Dillon’s data. The layer-averaged N2 include
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non-overturning parts of the water column where stratification is higher than within

overturns. I also used a buoyancy flux formulation for the second model using a decay

time parameterisation not sensitive to the N2 over-estimation. Dillon’s oceanic data

were consistent with the third model describing steady-state anisotropic turbulence

at inertial-buoyancy balance. His freshwater data set was marginally consistent with

the second model, describing growing isotropic turbulence. The consistency between

models and data stops with the coefficient. Dillon’s data has values of χθ a factor of 3

higher than models two and three account for, leading to an average mixing efficiency

greater than 1. Apart from this difference, Dillon et al.’s (1987) empirical relation

for buoyancy flux as Jb = 4.8 ξ N is the same as model three (assuming Jb is equal

to the dissipation of potential energy, measured by Dilon et al.). Caution is adviced

using Dillon et al.’s (1987) relation which is possibly an over-estimate by a factor of

3, as well as not being a general result.

8.4 Difficulties

If only layer-averaged Thorpe quantities are available to calculate Jb ≈ ξN or

Jb ≈ (2/3) ξNFrt, then one needs to worry about APEF approximations as dis-

cussed in chapter 2. This difficulty disappears when all original data are available, as

in chapters 6 and 7. The APEF and the density gradient can be calculated over each

separate overturn. This leads to non-approximated values of ξN . If turbulent kinetic

energy dissipation rate measurements are not available, then Frt must be evaluated

from Rig as discussed above. The other problem is that salt-compensated inversions

must not be mis-interpreted as overturns if temperature is used to find overturns.

This mostly occurs from intrusions of different water masses.

In chapter 6, finestructure data from Emerald basin were compared to ǫ data.

Most of the data were again consistent with a relation of the APEF to buoyancy

flux (testing of individual models was not done because measurements of χθ from

which buoyancy flux could also be estimated were not used). Most of the dissipation
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rates were consistent with buoyancy flux models if the mixing efficiency varies by

an order of magnitude, up to about 1. This is slightly high, but would be lower

with some time-averaging. The data that were not consistent with the models had

high ξN values and low ǫ values. CTD casts taken before and after the sequence of

EPSONDE drops show that the ship had moved between two water masses during the

EPSONDE sampling. It is likely that intrusions between these water masses caused

the mis-interpretation of temperature inversions as overturns.

The main difficulty with the use of this technique in areas where salinity controls

the density gradient is the possibility of salt-stabilized inversions being mis-interpreted

as overturns. Obviously, temperature measurements alone cannot be trusted in such

circumstances. In chapter 7, data from the St. Lawrence estuary showed that even

slight T–S differences in water masses could cause mis-interpretation. This is very

problematic because the apparent APEF of these intrusions is very high. However, it

was also shown in chapter 7 that a conventional CTD used in the absence of surface

waves (heaving the winched instrument up and down) produced T–S relations suffi-

ciently reliable to determine if temperature inversions were overturns. In the presence

of waves, overturning within the surface mixed layer could escape the sensitivity of

the instrument. Overturning below the mixed layer could be sampled if ship motion

can be de-coupled from the instrument. There are at least three ways of doing this: i)

using a motion-compensating winch, ii) using a free-falling instrument and iii) using

a parachuted instrument. In these ideal measuring conditions, an ordinary CTD can

be used to record energetic overturns, and these measurements can be used to infer

buoyancy flux.



Appendix A

Validity of the Determination of

the Transition Dissipation Rate

Grid-turbulence experiments by Stillinger et al. (1983) and Itsweire et al. (1986)

were used to determine the transition dissipation rate, ǫtr. This quantity defines the

minimum bandwidth available to overturning scales needed to produce a buoyancy

flux.

The bandwidth is defined as the ratio of the Ozmidov scale LO = (ǫ/N3)1/2 to the

Kolmogorov scale LK = (ν3/ǫ)1/4. The Ozmidov scale is the maximum overturning

scale in the presence of stratification and the Kolmogorov scale is the length scale at

which viscous forces equal inertial forces and viscosity dissipates energy. Raised to

the 4/3 power, the ratio becomes

[

LO

LK

]4/3

=
ǫ

νN2
(A.1)

where ǫ/νN2 is often referred to as the turbulent intensity. The transition dissipation

rate is defined as the minimum multiple of νN2 required to sustain a buoyancy flux.

Itsweire et al. (1986) estimate the transition dissipation rate as

ǫtr = (15 ± 1.2) νN2 for M = 1.905 cm

ǫtr = (21 ± 1.4) νN2 for M = 3.81 cm
(A.2)
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It is reasonable to assume that some minimum inertial force may be required to

overcome viscous force to create overturning. The ratio ǫ/νN2 can be interpreted as a

Reynolds number because it describes the ratio of inertial to viscous forces (although

it is different than a Reynolds number based on turbulent scales as Ret = u′LT /ν).

Thus Itsweire et al.’s (1986) interpretation appears reasonable.

I believe these numbers to be suspect. Consider Figure 4.10 showing the parameter

space for Lt/LO versus ǫ/νN2. Many data points that were used by Itsweire et

al. (1986) are shown to contain significant amounts of internal wave energy by a new

scaling analysis done in chapter 4 (see Figure 4.4). Some data with turbulent intensity

as high as ǫ/νN2 = 100 are mostly internal waves.

Further, consider Figure A.1 showing the isotropy of turbulent velocities w′/u′

against turbulent intensity ǫ/νN2. The solid symbols indicate the presence of internal

wave energy from the criterion derived in chapter 4. The top two panels have a grid

spacing of M = 3.81 cm, the bottom ones have M = 1.905 cm. The transition

dissipation rate was calculated by Itsweire et al. (1986) as 21 νN2 for the top panels.

Note most of the data at that energy level contain internal waves. The transition

dissipation rate was calculated as 15 νN2 for the bottom panels. In both these cases

anisotropy increases with decreasing energy, as expected (Gargett et al., 1984), until

at ǫ/νN2 ≈ 25 where w′/u′ increases. The increase is most certainly due to internal

wave energy. The increase begins before my criterion classifies data as internal waves,

suggesting the criterion could be tighter.

Itsweire et al. (1986) argue that the internal wave energy is created by the grid

at a low level, and only becomes perceptible when the turbulent kinetic energy has

sufficiently decayed. Considering that Itsweire et al. (1986) calculated different tran-

sition dissipation rates for the two grid size, and because it is more reasonable to

assume that such a value should be universal, it then seems likely that the internal

wave energy interfered with their calculation of the cross-correlation ρ′w′. Values of

w′ are probably internal wave energy for ǫ/νN2 < 25. The correlation ρ′w′ from the

much less energetic turbulent fluctuations may then be drowned out by the mostly
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Figure A.1: Isotropy of rms turbulent velocities w′/u′ versus turbulence intensity
ǫ/νN2. Values in the legend are for N in s−1. Open symbols are for q/(ǫLt)

1/3 < 2.2
(turbulence) and solid symbols for q/(ǫLt)

1/3 ≥ 2.2 (internal waves). The vertical
lines are for ǫ/νN2 = 15 (small grid mesh size) and ǫ/νN2 = 21 (large grid mesh
size). They are the values quoted by Itsweire et al. (1986) at which buoyancy flux
ceased.
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uncorrelated product of ρ′w′ associated with the internal waves.

Until further experiments are done without internal waves, or until the technique

Itsweire et al. (1986) used is shown to be sensitive enough to pick up weak cross-

correlation amongst stronger internal wave energy, I would suggest that ǫtr = 15 νN2

be viewed as an upper bound on the transition dissipation rate. Perhaps future exper-

iments without internal waves but with a range of Frt will show that the important

non-dimensional number is Ret rather than ǫ/νN2.



Appendix B

Interpretations of the

Grid-Turbulence Experiments

This appendix reviews the interpretions of Ivey & Imberger (1991) and Gargett (1988)

of the grid-turbulence experiment results used in chapter 4. Ivey & Imberger obtain

an empirical result similar to my isotropic model. It is then important for me to

illustrate where their contribution and mine differ. Gargett (1988), on the hand, has

a completely different interpretation of the experiments as evolving from anisotropy

towards isotropy as sluggish low-Reynolds-number turbulence. Since her interpreta-

tion could invalidate my results, I will contribute new evidence to support my point

of view.

B.1 Ivey and Imberger’s Empirical Relations

Ivey & Imberger (Ivey and Imberger, 1991; Imberger and Ivey, 1991) use the SHV,

IHV and other lab results to derive an empirical prediction to the flux Richardson

number as function as turbulent parameters, assuming full isotropy. The resulting

form is similar to my second model. Their work is first summarized. A discussion

about our differing view points follows.

Ivey & Imberger (1991) describe the experiments in the Frt–Ret parameter space
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where the turbulent Froude number is written in various forms as

Frt ≡
u′

NLt
(B.1)

=

[

ǫ

L2
t N3

]1/3

(B.2)

=
[

LO

Lt

]2/3

(B.3)

=

[

ǫ

g′
ew

′

]1/2

(B.4)

using w′ = u′ ≈ (ǫLt)
1/3, and defining g′

e = gρ′
e/ρ = N2Lt. The turbulent (overturn-

ing) Reynolds number is

Ret ≡
u′Lt

ν
=

ǫ1/3L
4/3
t

ν
=
[

Lt

LK

]4/3

(B.5)

Additionally, the small-scale Froude number was defined as

Frγ ≡
γ

N
=
[

ǫ

νN2

]1/2

=
[

LO

LK

]2/3

(B.6)

where γ is the rate of strain of the small-scale fluctuations or high wavenumber

components of the turbulence defined by:

ǫ = νγ2 (B.7)

The small-scale Froude number is interpreted as the ratio of the rate of strain of the

small-scale fluctuations, γ, to the rate of adjustment by buoyancy of overturn scale

fluctuations, N .

The three parameters Frt, Ret and Frγ are related by

ǫ

νN2
= Fr2

γ = Fr2
t Ret (B.8)

written here in terms of the more commonly used turbulent intensity parameter

ǫ/νN2. Only two of the three parameters are thus needed to describe the turbu-

lence.



218

Ivey & Imberger suggest that viscosity suppresses the turbulence when Ret < 15

and the combined effects of buoyancy and viscosity suppress overturning for Frγ <

151/2 = 3.9 (from Ivey & Imberger’s average of data from SHV, IHV and other data

sets.)

B.1.1 Flux Richardson number, Rf

Ivey & Imberger define a generalized flux Richardson number as the buoyancy flux

divided by the net mechanical energy required (or available) to sustain the turbulent

motions. For the decaying grid-turbulence, this is

Rf =
Jb

Jb + ǫ
=

1

1 + (ǫ/Jb)
(B.9)

Taking advantage of the direct measurements of buoyancy flux, they introduce

the correlation coefficient (following Luketina et al. (1989))

Rρw =
ρ′

ew
′

(ρ′2
e )

1/2
(w′2)

1/2
(B.10)

for which the dependence on turbulent parameters can be obtained. It allows them

to write the flux Richardson number as

Rf =
1

1 + ǫ/Jb

=

[

1 +
ǫ

(g/ρ)ρ′
ew

′Rρw

]−1

=

[

1 +
Fr2

t

Rρw

]−1

(B.11)

from Jb = (g/ρ)ρ′
ew

′Rρw and using (B.4).

Ivey & Imberger then proceed to test (B.11) by first finding the dependence of

Rρw as a function of Frt, shown in Figure B.1A. They find that Rρw tends to an

asymptotic value between 0.2 and 0.5 for Frt > 1.2 such that

Rf = 1/(1 + 3Fr2
t ) for Frt > 1.2 (B.12)

without dependence on Ret so long as Ret > 30. For Frt < 1.2, they find a

quick decrease of Rρw towards lower Frt, reaching zero when motion is made up

predominantly of internal waves. They find this behaviour entirely consistent with
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the result of SHV and IHV1 who found that effects of buoyancy are first felt at

Frt = (LO/Lt)
2/3 ≈ 1.1. Ivey & Imberger then proceed to find a functional form for

Rf which satisfies three constraints: Rf = 0 when Frt = (Ret/15)−1/2 from (B.8)

and that the solution patches with (B.12) smoothly, which sets the second and third

constraints as Rf = 0.19 and ∂Rf/∂Frt = -0.25 at Frt = 1.2. The resulting depen-

dence of Rf on Frt is shown in Figure 4.6A compared to data without internal wave

contributions (Note that Ivey & Imberger included these internal waves data).

B.1.2 Discussion of Ivey and Imberger’s Interpretation

There are several problems with the empirical fit that Ivey and Imberger have chosen

and with the way in which they have done it. On physical grounds, they argue that

for Frt > 1 the velocity is greater than the buoyancy adjustment velocity NLt such

that turbulence is possible. By contrast, for Frt < 1 velocities cannot break the

hold of gravity and only internal wave motion is possible. Therefore, they expect

a decrease in Rf for Frt < 1 because of the expected internal wave motions in

that Froude number range. However, when (3.26) is verified in Figure 4.5A, it is

seen that although Lt/LO continues to increase after the transition to internal wave

motion (using my new classification scheme), the measured Frt increases instead of

decreases, and is still greater than unity for internal wave dominated data. Therefore,

since Ivey and Imberger chose to show both Rf and Rρw variations as functions of

Frt, rather than as a function of Lt/LO, their transition to internal wave occurs at a

higher Frt, and considerable scatter is added in their plots. Removing internal wave

data takes out much of the scatter, as shown in Figure 4.6B.

1In the experiments, Lt initially grows at the same rate for all stratifications, matching the growth
rate in un-stratified experiments. The overturning scale Lt deviates from the un-stratified case when
the effects of buoyancy are first felt. The ratio Lt/LO at this transition was debated by SHV and IHV
because they felt it represented the inertial-buoyancy balance, so that the ratio should be directly
comparable with Dillon’s (1982) oceanic result of LT /LO = 1.25. SHV obtained Lt/LO = 0.7, but
IHV obtained Lt/LO = 0.85 which they thought to be more accurate. Interestingly, IHV noted
that their result of Lt/LO = 0.85 (equal to LT /LO = 0.7 using LT /Lt ≈ 1.2 from Itsweire (1984),
Figure 4.9 here) was well correlated with Dillon’s (1982) result of 0.8. In fact, Dillon’s result was
LO/LT = 0.8, not LT /LO = 0.8.
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Figure B.1: Correlation coefficient Rρw versus turbulent parameters (A) Frt, Rit;
and versus (B) ǫ/νN2 for data with Rf > 0 (not re-stratifying). Note that most data
with Rf < 0 are also classified as internal waves (q/(ǫLt)

1/3 < 2.2). A: The vertical
line is Frt = 1.2, to the right of which Rρw decreases (data with q/(ǫLt)

1/3 > 2.2,
classified as internal waves, decreases at a higher value of Frt). This was interpreted
by Ivey & Imberger (1991) as being due to the onset of buoyancy effects. The data
are shown coded for various values of ǫ/νN2. The solid symbols are classified as
internal waves (q/(ǫLt)

1/3 > 2.2); B: The same Rf data are shown versus ǫ/νN2,
coded for the presense of internal waves. The vertical line is ǫ/νN2 = 45. Note that
the decrease of Rρw for ǫ/νN2 < 45 or so is much tighter when only internal wave
free data are considered (q/(ǫLt)

1/3 < 2.2). Data from Stillinger et al. (1983) and
Itsweire et al. (1986).
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Second, their scaling suggests Γ = Rρw/Fr2
t so they verified the behaviour of

Rρw as function of Frt, shown in Figure B.1A, finding a dramatic decrease at the

onset of buoyancy effects. Further arguments in their paper point to a maximum

mixing efficiency corresponding to Rf = 0.19 at the inertial-buoyancy balance. They

compare this value to oceanic results, thus assuming that ocean mixing occurs at

inertial-buoyancy balance.

I have argued in chapter 4 that the inertial buoyancy-balance is not at Rit = 0.7

(Frt = 1.2), but rather at Rit ≈ 1.55. I have shown in chapter 4 that the dramatic

decrease in mixing efficiency in these experiments is due to low turbulent intensity

(ǫ/νN2 < 45) toward the end of the experiments. I believe that the turbulence never

reaches inertial-buoyancy balance. Figure B.1B shows the variation of Rρw versus

ǫ/νN2. It is consistent with my interpretation.

Lastly, a minor point. Their empirical fit for small Frt uses the condition that Rf

only goes to zero only when Frt = 3.9 Re
−1/2
t from the combined effects of buoyancy

and viscosity. Their graph did not include predictions for oceanic values of Ret. As

an extreme example, Gargett (1988) reports values of ǫ/νN2 of up to 50000 in the

ocean. Assuming Frt ≈ 1, this value of ǫ/νN2 yields Ret = 50000 for which their

prediction is included on Figure 4.6. How useful is this Ad Hoc parameterization? It

predicts high Rf for very low Frt for which no data are shown to produce overturning

either in the lab or in the ocean. Oceanographers measure ǫ rather than Ret and so

an empirical result based on ǫ/νN2 would have been more useful.

In summary, Ivey & Imberger’s empirical fit of Rf as function of Rit is in agreement

with my second model, but only for Frt > 1.2. Ivey & Imberger associate the observed

flux Richardson number of Rf ≈ 0.20 at Frt = 1.2 to expected values for Kelvin-

Helholtz billows which presumably occur at inertial-buoyancy balance. This implies

that ocean mixing occurs at this inertial-buoyancy balance.

I believe that (1) turbulence at the inertial-buoyancy balance was never sampled

in the laboratory experiments described because of the presence of internal waves.
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Therefore the maximum mixing efficiency quoted is an under-estimate. Ivey & Im-

berger misinterpreted the decrease of mixing efficiency, which I attritute to low tur-

bulent intensity (ǫ/νN2 < 45) (2) Comparing only the maximum mixing efficiency to

oceanic values implies that all oceanic mixing occurs at near-inertial balance. This

assumption may not be correct. I believe that average oceanic mixing efficiency is

lower than the inertial-buoyancy value, but that the oceanic average represents a mix

of conditions. (3) The extrapolation that they have made for Rf at Frt ≫ 1 are not

useful. Why even defines a mixing efficiency for a turbulent Froude number for which

overturning cannot occur (as shown by Figure 4.8)?

B.2 Gargett’s Alternative Interpretation

Gargett (1988) provides an alternative interpretation of the SHV and IHV experi-

ments as low Rew = w′Lt/ν flows with Frt ≈ 1 throughout their evolution. The

overturning would be initially anisotropic, evolving towards isotropy during decay.

This interpretion led to a debate between Van Atta (1990) and Gargett (1990). Since

her interpretation could invalidate my use of the data to verify my model, I will add

new evidence to the discussion.

B.2.1 Review

Gargett presents a scaling of the TKE equations for Frh ≡ u′/NLh ≈ 1 where Lh is a

horizontal overturning scale which differs from the overturn height when aniostropic.

Assuming Frh ≈ 1, she equates Lh to the Ozmidov scale LO, which is reasonable

when an inertial-buoyancy balance holds. The isotropy is then described by the ratio

Lt/Lh = Lt/LO. She defines a vertical fluctuations Reynolds number Rew = w′Lt/ν

and uses continuity, u′/LO ≈ w′/Lt, and u′ = (ǫLh)
1/3 to write a relation similar to
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Ivey and Imberger’s (B.8)2 as

ǫ

νN2
=

u′3/Lh

νN2
=

[

u′2

L2
hN

2

] [

Lhu
′

ν

]

= Fr2
h Reh =

[

u′2

L2
tN2

L2
t

L2
h

] [

Ltw
′

ν

L2
h

L2
t

]

= Fr2
t Rew

(B.13)

The turbulent Froude number Frt was said to be related to the mixing efficiency

via Γ = RρwFr−2
t by Ivey & Imberger3. Gargett writes a similar relation (dropping

the correlation coefficient Rρw) which is independent of Rew and isotropy4 as

Γ =
Jb

ǫ
≈

N2Ltw
′

u′3/Lh

=

[

N2L2
t

u′2

] [

w′Lh

u′Lt

]

= Fr−2
t (B.14)

Gargett argues from scaling the TKE equations for Rew ≫ 1 that the turbulent

velocity field must be nearly isotropic. In this case (B.13) collapses to (B.8).

In the case where Rew ≈ 1, the velocities may be anisotropic and (B.13) reduces

to
ǫ

νN2
= Fr2

t (B.15)

where turbulence is characterized by the same horizontal scales as for Rew ≫ 1, but

vertical scales should scale with ν and N as

w′ ≈ (νN)1/2 (B.16)

Lt ≈ (ν/N)1/2 (B.17)

Combining (B.15) and (B.14), the turbulence intensity is related to the mixing

efficiency; additionally using Frt = Frh(Lh/Lt) and Frh ≈ 1 (by assumption) we get

ǫ

νN2
= Γ−1 ≈

[

Lh

Lt

]2

(B.18)

2although there was no relation between the paper. I point out the similarity to help the reader.
3Note that this relation was derived using Frt = (ǫ/g′w′)1/2, which can be shown to not require

isotropy, as long it can be assumed that the relation u′ = (ǫLh)1/3 holds, where Lh is the horizontal
turbulent length-scale. Even for the anisotropic inertial-buoyancy balance case of the third model,
it can easily be shown that Frt = (ǫ/g′ew

′)1/2 still holds for Frt = LO/LT . Using ǫ = L2

ON3,
g′ = N2LT and w′ = NLT , we obtain Frt = (L2

ON3/N2LT NLT )1/2 = LO/LT .
4This also confirms my result in chapter 4 that isotropy does not matter for this formulation of

the mixing efficiency
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The main point is that while the two regimes, Rew ≈ 1 and Rew ≫ 1, describe

quite different types of turbulence, they may both be characterized by ǫ/νN2 ≫ 1

from (B.18) and (B.15). The turbulence intensity cannot be used to distinguish the

two types of turbulence.

If the turbulence is isotropic, ǫ/νN2 ≫ 1 is interpreted as Rew = Ret ≫ 1 from

(B.13) since Frh is of order 1. If the turbulence is not isotropic, Gargett assumes

Rew ≈ 1 such that ǫ/νN2 ≫ 1 must be interpreted as Γ ≪ 1. from (B.18).

B.2.2 Discussion of Gargett’s Interpretation

Gargett interprets the SHV and IHV experiments as the Rew ≈ 1 case because

Rew is relatively low compared to ocean values (from 160 near the grid to 20–30

at the transition to internal waves) and assumes Frh is close to unity throughout

the experiment. Indeed, I have found support for this point of view comes from

Figure 4.10 if LO is interpreted as Lh; the prediction from (B.18) is very good. Gargett

argues that the evolution in Figure 4.2 must be interpreted as always feeling the

effects of buoyancy, with sluggish vertical turbulence. The Ozmidov scale LO must

be interpreted as the horizontal scale of the turbulence, initially much greater than

the vertical scale Lt. The turbulence thus starts out being very anisotropic, evolving

towards isotropy as the vertical scale remains more or less constantly proportional to

(B.17) and LO decreases with the decay. If this were the case, our results concerning

the mixing efficiency, which are also predicted by Gargett independently of Rew,

would only validate the prediction for cases which do not apply to the ocean and

where the decreased efficiency is interpreted as caused by anisotropy. Of course,

Van Atta holds the opposite view that the turbulence is created at isotropy without

buoyancy effects, and evolves towards inertial-buoyancy balance.

Estimating the Horizontal Length Scale; An Inconsistency

Gargett assumes that LO represents the unmeasured horizontal turbulent length scale

Lh and, at the same time, that the continuity relation for turbulence u′/Lh ≈ w′/Lt
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holds. However, LO/Lt varies from 10 to 100 near the grid to less than 1 at the end

of the experiments (see Figure 4.2). At the same time w′/u′ is shown in Figure A.1

start close to unity, decreasing as the turbulence decays. This is consistent with

Van Atta’s interpretation; indeed Gargett (1988) points out the inconsistency with

her interpretation. If the continuity relation does not hold, then neither does her

Γ = Fr−2
t scaling which was shown to hold very well for the lab data.

I will exploit this inconsistency here with a new test to verify if Gargett’s or Van

Atta’s interpretation is correct. Since the assumption that LO = Lh is incompatible

with Lh ≈ Lt(u
′/w′), let us test which best fits Kolmogorov scaling ǫ = u′3/Lh.

Gargett’s assumption leads to

u′ = (ǫLh)
1/3 =

[

ǫ

N

]1/2

= LON (B.19)

while Van Atta’s leads to

u′ = (ǫLh)
1/3 =

[

ǫLt
u′

w′

]1/3

(B.20)

Figure B.2 provides a new test of Gargett’s and Van Atta’s interpretations. The

predictions (B.19) and (B.20) are compared versus Lt/LO. Gargett’s assumption

that LO is the appropriate horizontal turbulent length scale would imply horizontal

velocities near the grid three times larger than those measured (u′/NLO ≈ 1/3 in Fig-

ure B.2A at lowest values of Lt/LO which occur at the beginning of the experiments).

The length scales from turbulent continuity (and Van Atta’s interpretation of near-

isotropy near the grid) are consistent with turbulent scaling for most of the early part

of the evolution, where Gargett predicted they would not be. Turbulent scaling fails

far from the grid where velocities are smallest and internal wave are thought to be

important. Thus the SHV and IHV experiments cannot be interpreted as Gargett’s

low vertical Reynolds number flow at inertial-buoyancy balance.
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from continuity as Lt(u
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Appendix C

Review of Dillon’s Relations of

Finestructure to Mixing

Dillon (1982) was first to verify Thorpe’s (1977) proposal that the Thorpe scale LT

is related to the Ozmidiv scale LO. In this appendix, we review Dillon’s (1982; 1984)

and Dillon et al.’s (1987) work relating overturn-related quantities such as Thorpe

scales LT and the Available Potential Energy of the density Fluctions ξ to dissipation

and buoyancy flux. The data sets used in chapter 5 are briefly described.

C.1 Data Sets

Dillon (1982) tabled data obtained at Ocean Station P during the MILE experiment

(Series A and B) and at Green Peter Reservoir (Series C). For all cases, temperature

mainly determines density such that ρ′/ρ = −αT ′ and Jb = −αg w′T ′. The oceanic

data were taken in two periods; series A was sampled during winds of 5 m s−1, but

winds were greater than 15 m s−1 five hours before then. Series B were sampled in

strong winds (>15 m s−1). These two oceanic series (A and B) were deep in the

interior of wind-forced layers and in the seasonal thermocline. The reservoir data

(Series C) were taken in winds of 8.5 m s−1 and a portion were taken in the near-

surface zone. In all, 102 mixing layers of order 1–5 m thick were used. Only layers
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where all quantities are well resolved are used.

C.1.1 Relation of Thorpe Scale to Ozmidov

Dillon (1982) expected LT to be highly correlated with LO = (ǫ/N3)1/2 when the

gradient Richardson Rig was constant in time. To demonstrate this he started with

the steaty-state TKE balance equation (with the advective terms neglected)

−u′w′
∂U

∂z
= ǫ + Jb (C.1)

and assumed the Thorpe scale to be proportional to the size of an eddy, defined as

(−u′w′)1/2(∂U/∂z)−1. Then using Rig = N2(∂U/∂z)−2, N2 = −gρ−1(∂ρ/∂z) and

Rf = Jb/(Jb + ǫ) and some manipulation, (C.1) reduces to

LT ∝ Ri3/4
g

[

ǫ + Jb

N3

]1/2

= Ri3/4
g (1 − Rf )

−1/2LO (C.2)

Thus the LT –LO relation was expected to hold for nearly constant gradient and flux

Richardson numbers1.

Dillon’s comparison between Thorpe Scale and Ozmidov Scale is reproduced in

Figure C.1. Dillon obtained his much-quoted ratio of LT /LO = 1.25 by first perform-

ing a regression of the form LO = aLn
T on series B (the high wind case) where (C.2) is

expected to hold better for the more strongly driven turbulence; Dillon thought that

turbulence could be decaying in the other cases. Dillon obtained n = 0.98, close to

unity, and thus evaluated a from the mean ratio LO/LT = 0.8. The value of LO/LT

can be evaluated many different ways, a sample of which is provided in Table C.1 for

comparison with Dillon’s calculation. I obtain LO/LT = 0.885 rather than 0.8 using

all points of series B; this could be due to transcription errors in the table.

The data probably have a log-normal distribution suggesting that a regression in

logarithmic space is appropriate. In this case, the LT /LO ratio is 1.17 ×/÷ 1.14 from the

1In Chapter 3, it was noted that LT ∝ u′(∂U/∂z)−1 led to Rit ∝ Rig. Here we note that

LT ∝ (−u′w′)1/2(∂U/∂z)−1 leads to LT /LO ∝ Ri
3/4

g , consistent with LT /LO ∝ Ri
3/4

t for isotropic
turbulence from Chapter 3.
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Figure C.1: Comparison of Thorpe scales LT versus Ozmidov scales LO for two oceanic
cases (Series A and B) and a fresh water reservoir (Series C). Data are classified
by turbulent intensity ǫ/νN2. Open symbols are well resolved; filled symbols are
marginally resolved. Data are from tables in Dillon (1982). This figure corresponds
to Figures 8, 9 and 10 in Dillon (1982).
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Series A Series B Series A and B
All pts ǫ/νN2 > 200 All pts ǫ/νN2 > 200 All pts ǫ/νN2 > 200

Linear
LT /LO 1.04 1.04 1.23 1.23 1.15 1.15
LT /LO 1.03 1.00 1.23 1.21 1.11 1.09
(LO/LT )−1 0.81 0.76 1.13 1.14 0.92 0.89
Log
LT = aLO 0.91 0.87 1.17 1.17 0.99 1.02

×/÷1.19 ×/÷1.27 ×/÷1.14 ×/÷1.13 ×/÷1.15 ×/÷1.12

Table C.1: Calculation of the LT /LO ratio for oceanic data series A and B. In the
logarithmic regression, LT = aLO is used because LT = aLn

O was tried and n was
never statistically different than 1.

more strongly forced mixing of series B. This ratio remains unchanged whether all data

are used, or only those for which ǫ/νN2 > 200 associated with isotropic turbulence

(Gargett et al., 1984). While the ratio is numerically different from Dillon’s result of

1.25, the two are not statistically different.

C.1.2 Thorpe Scale Relation to Buoyancy Flux

The reservoir data (series C) has more scatter; Dillon attributed this to the smaller

segments, averaging 1.6 m instead of 3.5 m. Nevertheless, the LT /LO ratio was

consistent with the oceanic cases at the base of the mixing layer, but was much larger

near the surface where Richardson numbers can be much lower.

Dillon expected both a gradient and flux Richardson number on the LO/LT re-

lation from (C.2), and so attributed the disparity near the surface to decreasing

Richardson numbers. A new length scale LB = (JbN
−3)1/2 was introduced, estimat-

ing the buoyancy flux Jb from αgχθ/2(∂T/∂z). A weaker dependence on Rf was

predicted for the ratio LB/LT assuming Rf ≈ Rig by rewriting (C.2) as

LT ∝ Ri1/4
g

[

Rig
Rf

]

LB (C.3)
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The correlation between LT and LB is better than between LT and LO for all mix-

ing regimes (See figure C.2). This includes the near-surface zone where the LO/LT

ratio failed to hold, although LT /LB still decreases there. This is Dillon’s first indi-

cation that the Thorpe scale may be in fact more closely related to the buoyancy flux

than to dissipation.2

C.1.3 The APEF linked to buoyancy flux

As discussed in section 3.2.2, Dillon (1982) used the temperature variance equation

(3.8) to look at the decay time of temperature fluctuations by χθ, using Thorpe

fluctuations as the stock of temperature variance to dissipate. Dillon (1984) multiplied

the temperature variance equation (3.8) by αg/(2∂To/∂z) to obtain a potential energy

equation (3.10). He defined the Available Potential Energy of the density Fluctuations

ξ as the potential energy difference between the measured and re-ordered profile. The

re-ordered profile represents the base state from which an overturn has evolved from.

As I have argued in chapter 3, Dillon (1984) noted that (3.10) suggests an intimate

relation between the APEF and the potential energy dissipation rate 3N2κT Cx.

Dillon et al. (1987) end with an empirical relation between the APEF and the

dissipation of potential energy as

3N2κT Cx = 4.8 ξ N (C.4)

They suggest that this is the prime relation, but that LT ≈ LO follows from this if

3N2κT Cx/(ǫ + 3N2κT Cx) is fairly constant3.

C.1.4 Discussion

There are many similarities between Dillon’s (C.4) and my own models. Indeed

Dillon’s work was a great inspiration to me. The differences are mostly in the decay

2Although Dillon obtains LB/LT = 0.93, I prefer LT /LB = 1.2 from a log-space regression.
3If 3N2κT Cx = Jb and there is a steaty-state, then this is the flux Richardson number Rf , related

to the mixing efficiency.
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Series C
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1

101
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  [

m
]

10-2 10-1 1 101

LB  [m]

200 <  ε / ν N2  

100 <  ε / ν N2  < 200

45  <  ε / ν N2  < 100

      ε / ν N2  < 45

y = (0.63 ×/÷ 1.25) x0.65 +/- 0.09

y = (1.37 ×/÷ 1.21) x

Series A

10-2

10-1

1

101
L T

  [
m

]

200 <  ε / ν N2  

100 <  ε / ν N2  < 200

45  <  ε / ν N2  < 100

      ε / ν N2  < 45

y = (0.91 ×/÷ 1.23) x0.84 +/- 0.09

y = (1.24 ×/÷ 1.14) x

10-2 10-1 1 101

LB  [m]

Series A, B and C

200 <  ε / ν N2  

100 <  ε / ν N2  < 200

45  <  ε / ν N2  < 100

      ε / ν N2  < 45

y = (0.78 ×/÷ 1.14) x0.76 +/- 0.06

y = (1.23 ×/÷ 1.11) x

Series B

200 <  ε / ν N2  

100 <  ε / ν N2  < 200

45  <  ε / ν N2  < 100

      ε / ν N2  < 45

y = (0.92 ×/÷ 1.18) x0.95 +/- 0.09

y = (0.99 ×/÷ 1.13) x

Figure C.2: Comparison of LT vs LB for two oceanic cases (Series A and B) and
a fresh water reservoir (Series C). Data are classified by turbulent intensity ǫ/νN2.
Open symbols are well resolved; filled symbols are marginally resolved. Data are from
tables in Dillon (1982). This figure corresponds to Figure 11 in Dillon (1982).
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time and mixing efficiency. Dillon (1984) compared terms in the total energy equation

(3.13) by approximating the total kinetic energy as 3 times ξ, and assumed a decay

time proportional to N−1. These assumptions are only consistent with my isotropic

model at inertial-buoyancy balance (see chapter 3).

Dillon et al.’s (1987) empirical result relates ξ to 3N2κT Cx again using a decay

time proportional to N−1. Their decay time is 4.8 times faster than my predictions;

This is discussed in chapter 4. Their only prediction regarding the relation of ǫ to

ξ N is through LT ≈ LO. Squaring this latter relation gives L2
T = ǫ/N3 and thus

ǫ ∝ ξ N . They predict the relation LT ≈ LO to hold for a constant mixing efficiency

(see above), but make no prediction as to what the mixing efficiency should be, or how

it should vary. My main contribution is to relate the APEF to buoyancy flux through

a simple kinematical model, and explain why and how mixing efficiency should vary

through anisotropy.



Appendix D

The Run-Length Method To

Determine Temperature Noise

Level

In this appendix, I briefly describe a new technique to estimate the temperature noise

level. No example is shown; only a brief description is given.

The aim is to determine the noise level of the temperature sensor. The tech-

nique assumes that the real temperature profile is generally monotonic such that any

measured inversions are either intrusions, overturns or noise. It is also assumed that

temperature is recorded with enough digits such that noise actually produces inver-

sions. The technique is then simply to identify which of the inversions are caused by

noise; the noise level is then the rms Thorpe fluctuation T ′ of the noise-related inver-

sions, where T ′ is the temperature difference between the measured and re-ordered

profiles.

Let us denote the temperature sensor noise level as δT . Noise will create inversions

unrelated to physical features in low stratification: where noise δT is greater than the

temperature difference between successive points of the re-ordered profile δz (∂To/∂z),

where δz is the sampling interval and To is the re-ordered profile.

These inversions have differences with those created by overturns: their Thorpe

234
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fluctuations T ′ are approximately equal to the noise level δT , and the overturns are

not ‘very’ top-heavy. This second point is explained by contrasting it to the case of

an overturn. The top half or so of an overturn is heavy water that originates from the

bottom half. Thus it is top heavy, in the sense that most Thorpe fluctuations in the

top half are positive and most of those in the bottom half are negative (for a stable

profile with increasing temperature with pressure). When noise creates inversions

this pattern does not occur. Noise might add to a point and subtract from the next.

Re-ordering the points moves them randomly upwards and downwards, and a series

of Thorpe fluctuations of random sign follows.

The temperature noise level δT is estimated by the amplitude of Thorpe fluctu-

ations which have a random sign distribution. These are identified by a run-length

analysis. The run-length is the number of consecutive points of the same sign. For

a random population of numbers, equally divided between positive and negative, the

fraction of run lengths of length n is (1/2)n. If the distribution is random, half of the

run lengths should have a length of 1, a quarter should have a length of 2, and so on.

Noise can statistically produce very few run lengths of long length (say n > 5). This

is where the overturns come into play: since overturns are top-heavy they will have

long run-lengths, uncharacteristic of noise-related inversions. Thus, the run lengths

distribution calculated on a temperature profile containing both noise inversions and

energetic overturns has a decreasing number of run lengths with increasing size, until

the run length size where overturns starts to be observed. A run-length size cut-off

can then be chosen to separate noise from overturn, and the amplitude of Thorpe fluc-

tuations of noisy inversions can be calculated as an estimate of δT . An application

of this method is shown in Galbraith and Kelley (1992).

This method succeeds best with a short sampling interval and small instrument

least count. This increases both the occurrence of noise inversions and the difference

between the high run lengths of overturns and the low run length of noise. When

very few noise-related inversions occur it is impossible to apply the technique.
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